skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conjugate heat transfer analysis using the Calore and Fuego codes.

Abstract

Full coupling of the Calore and Fuego codes has been exercised in this report. This is done to allow solution of general conjugate heat transfer applications that require more than a fluid flow analysis with a very simple conduction region (solved using Fuego alone) or more than a complex conduction/radiation analysis using a simple Newton's law of cooling boundary condition (solved using Calore alone). Code coupling allows for solution of both complex fluid and solid regions, with or without thermal radiation, either participating or non-participating. A coupled physics model is developed to compare to data taken from a horizontal concentric cylinder arrangement using the Penlight heating apparatus located at the thermal test complex (TTC) at Sandia National Laboratories. The experimental set-up requires use of a conjugate heat transfer analysis including conduction, nonparticipating thermal radiation, and internal natural convection. The fluids domain in the model is complex and can be characterized by stagnant fluid regions, laminar circulation, a transition regime, and low-level turbulent regions, all in the same domain. Subsequently, the fluids region requires a refined mesh near the wall so that numerical resolution is achieved. Near the wall, buoyancy exhibits its strongest influence on turbulence (i.e., where turbulence conditions exist).more » Because low-Reynolds number effects are important in anisotropic natural convective flows of this type, the {ovr {nu}{sup 2}}-f turbulence model in Fuego is selected and compared to results of laminar flow only. Coupled code predictions are compared to temperature measurements made both in the solid regions and a fluid region. Turbulent and laminar flow predictions are nearly identical for both regions. Predicted temperatures in the solid regions compare well to data. The largest discrepancies occur at the bottom of the annulus. Predicted temperatures in the fluid region, for the most part, compare well to data. As before, the largest discrepancies occur at the bottom of the annulus where the flow transitions to or is a low-level turbulent flow.« less

Authors:
Publication Date:
Research Org.:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
921734
Report Number(s):
SAND2007-5876
TRN: US200806%%19
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; C CODES; F CODES; HEAT TRANSFER; FLUID FLOW; BOUNDARY CONDITIONS; LAMINAR FLOW; NATURAL CONVECTION; TEMPERATURE MEASUREMENT; THERMAL RADIATION; TURBULENT FLOW; Thermal analysis.; Heat transfer-Calculations.; Physics-Thermodynamics and Heat Transfer

Citation Formats

Francis, Nicholas Donald, Jr. Conjugate heat transfer analysis using the Calore and Fuego codes.. United States: N. p., 2007. Web. doi:10.2172/921734.
Francis, Nicholas Donald, Jr. Conjugate heat transfer analysis using the Calore and Fuego codes.. United States. https://doi.org/10.2172/921734
Francis, Nicholas Donald, Jr. Sat . "Conjugate heat transfer analysis using the Calore and Fuego codes.". United States. https://doi.org/10.2172/921734. https://www.osti.gov/servlets/purl/921734.
@article{osti_921734,
title = {Conjugate heat transfer analysis using the Calore and Fuego codes.},
author = {Francis, Nicholas Donald, Jr.},
abstractNote = {Full coupling of the Calore and Fuego codes has been exercised in this report. This is done to allow solution of general conjugate heat transfer applications that require more than a fluid flow analysis with a very simple conduction region (solved using Fuego alone) or more than a complex conduction/radiation analysis using a simple Newton's law of cooling boundary condition (solved using Calore alone). Code coupling allows for solution of both complex fluid and solid regions, with or without thermal radiation, either participating or non-participating. A coupled physics model is developed to compare to data taken from a horizontal concentric cylinder arrangement using the Penlight heating apparatus located at the thermal test complex (TTC) at Sandia National Laboratories. The experimental set-up requires use of a conjugate heat transfer analysis including conduction, nonparticipating thermal radiation, and internal natural convection. The fluids domain in the model is complex and can be characterized by stagnant fluid regions, laminar circulation, a transition regime, and low-level turbulent regions, all in the same domain. Subsequently, the fluids region requires a refined mesh near the wall so that numerical resolution is achieved. Near the wall, buoyancy exhibits its strongest influence on turbulence (i.e., where turbulence conditions exist). Because low-Reynolds number effects are important in anisotropic natural convective flows of this type, the {ovr {nu}{sup 2}}-f turbulence model in Fuego is selected and compared to results of laminar flow only. Coupled code predictions are compared to temperature measurements made both in the solid regions and a fluid region. Turbulent and laminar flow predictions are nearly identical for both regions. Predicted temperatures in the solid regions compare well to data. The largest discrepancies occur at the bottom of the annulus. Predicted temperatures in the fluid region, for the most part, compare well to data. As before, the largest discrepancies occur at the bottom of the annulus where the flow transitions to or is a low-level turbulent flow.},
doi = {10.2172/921734},
url = {https://www.osti.gov/biblio/921734}, journal = {},
number = ,
volume = ,
place = {United States},
year = {2007},
month = {9}
}