skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates.

Abstract

No abstract prepared.

Authors:
; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
920979
Report Number(s):
ANL/MSD/JA-60413
Journal ID: ISSN 0163-1829; PRBMDO; TRN: US200805%%4
DOE Contract Number:
DE-AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Phys. Rev. B; Journal Volume: 76; Journal Issue: 2007
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE; CUPRATES; ELECTRONS; HOLES; DOPED MATERIALS; ORDER PARAMETERS

Citation Formats

Millis, A. J., Norman, M. R., Materials Science Division, and Columbia Univ. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates.. United States: N. p., 2007. Web. doi:10.1103/PhysRevB.76.220503.
Millis, A. J., Norman, M. R., Materials Science Division, & Columbia Univ. Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates.. United States. doi:10.1103/PhysRevB.76.220503.
Millis, A. J., Norman, M. R., Materials Science Division, and Columbia Univ. Mon . "Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates.". United States. doi:10.1103/PhysRevB.76.220503.
@article{osti_920979,
title = {Antiphase stripe order as the origin of electron pockets observed in 1/8-hole-doped cuprates.},
author = {Millis, A. J. and Norman, M. R. and Materials Science Division and Columbia Univ.},
abstractNote = {No abstract prepared.},
doi = {10.1103/PhysRevB.76.220503},
journal = {Phys. Rev. B},
number = 2007,
volume = 76,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Cited by 18
  • One of the central questions in the cuprate research is the nature of the ‘normal state’ which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-T c cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate throughmore » direct comparisons between as-grown and post-annealed Nd 1.86Ce 0.14CuO 4 (NCCO) single crystals using Cu L 3-edge resonant soft x-ray scattering (RSXS) and angleresolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, l) as like the reported superconducting NCCO. This superconductivity-insensitivesignal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. Furthermore, these results call into question the universality of CDW phenomenon in the cuprates.« less
  • One of the central questions in the cuprate research is the nature of the ‘normal state’ which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected to shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-T c cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate throughmore » direct comparisons between as-grown and post-annealed Nd 1.86Ce 0.14CuO 4 (NCCO) single crystals using Cu L 3-edge resonant soft x-ray scattering (RSXS) and angleresolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, l) as like the reported superconducting NCCO. This superconductivity-insensitivesignal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. Furthermore, these results call into question the universality of CDW phenomenon in the cuprates.« less
  • We review the current state of efforts to use resonant soft X-ray scattering (RSXS), which is an elastic, momentum-resolved, valence band probe of strongly correlated electron systems, to study stripe-like phenomena in copper-oxide superconductors and related materials. We review the historical progress including RSXS studies of Wigner crystallization in spin ladder materials, stripe order in 214-phase nickelates, 214-phase cuprates, and other systems. One of the major outstanding issues in RSXS concerns its relationship to more established valence band probes, namely angle-resolved photoemission (ARPES) and scanning tunneling microscopy (STM). These techniques are widely understood as measuring a one-electron spectral function, yetmore » a relationship between RSXS and a spectral function has so far been unclear. Using physical arguments that apply at the oxygen K edge, we show that RSXS measures the square modulus of an advanced version of the Green’s function measured with STM. This indicates that, despite being a momentum space probe, RSXS is more closely related to STM than to ARPES techniques. Finally, we close with some discussion of the most promising future directions for RSXS. We will argue that the most promising area lies in high magnetic field studies, particularly of edge states in strongly correlated heterostructures, and the vortex state in superconducting cuprates, where RSXS may clarify the anomalous periodicities observed in recent quantum oscillation experiments.« less