skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials

Abstract

Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.

Authors:
;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE. Assistant Secretary for Energy Efficiency andRenewable Energy. Vehicle Technologies
OSTI Identifier:
919824
Report Number(s):
LBNL-59450
Journal ID: ISSN 0378-7753; JPSODZ; R&D Project: 500301; BnR: VT0301030; TRN: US200822%%574
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Power Sources; Journal Volume: 165; Journal Issue: 2; Related Information: Journal Publication Date: 03/20/2007
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; ELECTRODES; MANGANESE; MANGANESE OXIDES; OXIDES; STORAGE; SURFACE AREA; Manganese oxides cathode materials storage at 55oC manganesedissolution

Citation Formats

Park, Yong Joon, and Doeff, Marca M. Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials. United States: N. p., 2006. Web.
Park, Yong Joon, & Doeff, Marca M. Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials. United States.
Park, Yong Joon, and Doeff, Marca M. Tue . "Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials". United States. doi:. https://www.osti.gov/servlets/purl/919824.
@article{osti_919824,
title = {Effect of Structure on the Storage Characteristics of ManganeseOxide Electrode Materials},
author = {Park, Yong Joon and Doeff, Marca M.},
abstractNote = {Eleven types of manganese-containing electrode materialswere subjected to long-term storage at 55oC in 1M LiPF6 ethylenecarbonate/dimethyl carbonate (EC/DMC) solutions. The amount of manganesedissolution observed depended upon the sample surface area, the averageMn oxidation state, the structure, and substitution levels of themanganese oxide. In some cases, structural changes such as solvateformation were exacerbated by the high temperature storage, andcontributed to capacity fading upon cycling even in the absence ofsignificant Mn dissolution. The most stable materials appear to beTi-substituted tunnel structures and mixed metal layered oxides with Mnin the +4 oxidation state.},
doi = {},
journal = {Journal of Power Sources},
number = 2,
volume = 165,
place = {United States},
year = {Tue Jan 31 00:00:00 EST 2006},
month = {Tue Jan 31 00:00:00 EST 2006}
}
  • Various metals, such as Pt, stainless steel (SUS), Al, Ni, and Ti, were used as a top electrode (TE) to evaluate the dependency of the resistive switching characteristics on the TE of the metal/TiO{sub 2}/Pt structure. The variation of the chemical composition of TiO{sub 2} in the metal/TiO{sub 2}/Pt structure before and after switching was examined to identify the factors affecting the resistive switching characteristics of the samples with various TE materials. In the case of TE/TiO{sub 2}/Pt structures showing unstable resistive switching behavior, e.g., those with the Al, Ni, and Ti TEs, secondary ion mass spectrometry revealed an increasemore » in the oxygen concentration at the interface area between the TE metal and TiO{sub 2}. This suggests that the oxidation reaction at the interface between the TE metal and TiO{sub 2} might cause the TE/TiO{sub 2}/Pt structure to exhibit unstable resistive switching characteristics. According to these results, the oxidation reaction at the interface between the metal TE and TiO{sub 2} thin film is a primary factor affecting the resistive switching characteristics of TiO{sub 2}-based Resistive Random Access Memory devices.« less
  • The physical and electrochemical properties of LixMnO2 and LixTi0.11Mn0.89O2 synthesized from precursors made by glycine-nitrate combustion (GNC) and solid-state synthesis methods (SS) are examined in this paper. The highest specific capacities in lithium cells are obtained for SS-LixMnO2 electrodes at low current densities, but GNC-LixTi0.11Mn0.89O2 electrodes show the best high rate performance. These results can be explained by changes in the voltage characteristics and differences in the particle morphologies induced by the Ti-substitution and synthesis method. Ti-substitution also results in a decrease in the electronic conductivity, but greatly improves the thermal properties and imparts dissolution resistance to the electrode. Formore » these reasons, it is preferable to use LixTi0.11MnO0.89O2 in lithium battery configurations rather than LixMnO2. Suggestions for improving the electrochemical performance of the Ti-substituted variant are given based on the results described herein.« less
  • The authors have studied effects of different starting materials on preparation of LiNi{sub 1{minus}x}Co{sub x}O{sub 2} cathode material for a Li-ion cell where x = 0.1, 0.2, and 0.3, and the electrochemical properties of resulting compounds from two different preparation methods. A preparation method (method B) which uses spherical powder of Ni{sub 1{minus}x}Co{sub x}(OH){sub 2} as one of the starting material produced a much superior cathode material than the other method (method A) which uses Ni(OH){sub 2} and Co(OH){sub 2}. Method A produced compounds with relatively high degrees of cation mixing which reduces electrochemical utilization (discharge capacity), increases irreversible capacity,more » and reduces stability on cycling of the cathode material. Method B, in contrast, produced cathode material with a much reduced degree of cation-mixing, thus improving the electrochemical properties. The spherical particle of material prepared by method B has the additional advantage of improved packing density of the electrode with improved volumetric energy density. The ratio of c/a was increased and the electrochemical stability on cycling of the material was improved as the content of Co (value of x) is increased.« less
  • The parameters of the electrode region of an electrode microwave discharge in nitrogen are studied by emission spectroscopy. The radial and axial distributions of the intensities of the bands of the second (N{sub 2}(C{sup 3{Pi}}{sub u} {sup {yields}}B{sup 3{Pi}}{sub g})) and first (N{sub 2}(B{sup 3{Pi}}{sub g} {sup {yields}}A{sup 3{Sigma}}{sub u}{sup +})) positive systems of molecular nitrogen and the first negative system of nitrogen ions (N{sub 2}{sup +} (B{sup 2{Sigma}}{sub u}{sup +} {sup {yields}}X{sup 2{Sigma}}{sub g}{sup +})), the radial profiles of the electric field E and the electron density N{sub e}, and the absolute populations of the vibrational levels v{sub C}more » = 0-4 of the C{sup 3{Pi}}{sub u} excited state of N{sub 2} and the vibrational level v{sub Bi} = 0 of the B{sup 2{Sigma}}{sub u}{sup +} excited state of a molecular nitrogen ion are determined. The population temperature of the first vibrational level T{sub V} of the ground electronic state X{sup 1{Sigma}}{sub g}{sup +} of N{sub 2} and the excitation temperature T{sub C} of the C{sup 3{Pi}}{sub u} state in the electrode region of the discharge are measured. The radius of the spherical region and the spatially integrated plasma emission spectra are studied as functions of the incident microwave power and gas pressure. A method for determining the electron density and the microwave field strength from the plasma emission characteristics is described in detail.« less
  • Optimum matrix materials and features of a hydrogen gas electrode of lead-hydrogen storage batteries were examined. Carbon materials AG-3, SKT-6A and acetylene black were used as the current-collecting base of the electrode in contact with the sulfuric acid electrolyte. High-pressure polyethylene powder or fluoropolymer were used as wetproofing agents and as electrode binders. Platinum was applied to the electrodes, tested in a gaseous hydrogen saturated cell and linear-scan voltammograms of the electrodes were recorded. Polarization comparable with that found for the lead-dioxide electrode was produced when current was drawn from the hydrogen electrodes.