skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct single ion machining of nanopores.

Abstract

The irradiation of thin insulating films by high-energy ions (374 MeV Au{sup +25} or 241 MeV I{sup +19}) was used to attempt to form nanometer-size pores through the films spontaneously. Such ions deposit a large amount of energy into the target materials ({approx}20 keV/nm), which significantly disrupts their atomic lattice and sputters material from the surfaces, and might produce nanopores for appropriate ion-material combinations. Transmission electron microscopy was used to examine the resulting ion tracks. Tracks were found in the crystalline oxides quartz, sapphire, and mica. Sapphire and mica showed ion tracks that are likely amorphous and exhibit pits 5 nm in diameter on the surface at the ion entrance and exit points. This suggests that nanopores might form in mica if the film thickness is less than {approx}10 nm. Tracks in quartz showed strain in the matrix around them. Tracks were not found in the amorphous thin films examined: 20 nm-SiN{sub x}, deposited SiOx, fused quartz (amorphous SiO{sub 2}), formvar and 3 nm-C. Other promising materials for nanopore formation were identified, including thin Au and SnO{sub 2} layers.

Authors:
; ; ;
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
919651
Report Number(s):
SAND2004-5090
TRN: US200825%%260
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; POROUS MATERIALS; PORE STRUCTURE; THIN FILMS; FORMVAR; IRRADIATION; MACHINING; MICA; QUARTZ; SAPPHIRE; SILICON NITRIDES; SILICON OXIDES; CARBON; GOLD; TIN OXIDES; NANOSTRUCTURES; Nanopores; Etching.; Ion bombardment.

Citation Formats

Doyle, Barney Lee, Follstaedt, David Martin, Rossi, Paolo, and Norman, Adam K. Direct single ion machining of nanopores.. United States: N. p., 2004. Web. doi:10.2172/919651.
Doyle, Barney Lee, Follstaedt, David Martin, Rossi, Paolo, & Norman, Adam K. Direct single ion machining of nanopores.. United States. doi:10.2172/919651.
Doyle, Barney Lee, Follstaedt, David Martin, Rossi, Paolo, and Norman, Adam K. Fri . "Direct single ion machining of nanopores.". United States. doi:10.2172/919651. https://www.osti.gov/servlets/purl/919651.
@article{osti_919651,
title = {Direct single ion machining of nanopores.},
author = {Doyle, Barney Lee and Follstaedt, David Martin and Rossi, Paolo and Norman, Adam K.},
abstractNote = {The irradiation of thin insulating films by high-energy ions (374 MeV Au{sup +25} or 241 MeV I{sup +19}) was used to attempt to form nanometer-size pores through the films spontaneously. Such ions deposit a large amount of energy into the target materials ({approx}20 keV/nm), which significantly disrupts their atomic lattice and sputters material from the surfaces, and might produce nanopores for appropriate ion-material combinations. Transmission electron microscopy was used to examine the resulting ion tracks. Tracks were found in the crystalline oxides quartz, sapphire, and mica. Sapphire and mica showed ion tracks that are likely amorphous and exhibit pits 5 nm in diameter on the surface at the ion entrance and exit points. This suggests that nanopores might form in mica if the film thickness is less than {approx}10 nm. Tracks in quartz showed strain in the matrix around them. Tracks were not found in the amorphous thin films examined: 20 nm-SiN{sub x}, deposited SiOx, fused quartz (amorphous SiO{sub 2}), formvar and 3 nm-C. Other promising materials for nanopore formation were identified, including thin Au and SnO{sub 2} layers.},
doi = {10.2172/919651},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Oct 01 00:00:00 EDT 2004},
month = {Fri Oct 01 00:00:00 EDT 2004}
}

Technical Report:

Save / Share:
  • Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.
  • The three-dimensional spatial arrangement of vacancies contained in depleted zones (DZs), of ion-irradiated tungsten specimens, was determined with atomic resolution by the field-ion microscope (FIM) technique. These DZs were detected in the near-surface region of specimens which had been irradiated in situ at less than or equal to15 K with 20 keV W/sup +/, 30 keV W/sup +/, Kr/sup +/, Cu/sup +/, or Ar/sup +/ ions. The values of the ion dose employed were small (less than or equal to 10/sup 13/ ions cm/sup -2/); therefore, each DZ analyzed was the result of the impact of a single projectile ion.more » At the irradiation temperature (less than or equal to 15/sup 0/K) both the self-intersitital atoms and vacancies were immobile, so that the primary state of radiation damage was preserved. The following properties of each DZ were determined: the total number of vacancies; the number of vacancies in the near-surface region; the spatial extent - that is, the dimensions required to determine a volume; the average vacancy concentration; the average vacancy concentration associated with the non-surface region; the first-nearest neighbor cluster distribution for the vacancies in the near-surface region; the radial distribution function of all the vacancies; the distribution of vacancies as a function of depth normal to the irradiated surface; and the sputtering yield. Most of the above properties of the near-surface DZs had similar values to those of the DZs detected in the bulk of the FIM specimens. The total number of vacancies detected in the near-surface region wasapproximately consistent with theoretical estimates of the average sputtering yield. The sputtering yield of individual DZs exhibited significant fluctuations from the measured average sputtering yield.« less
  • Changes in acoustic emission signal characteristics with tool wear were monitored during single point machining of 4340 steel and Ti-6Al-4V heat treated to several strength levels, 606l-T6 aluminum, 304 stainless steel, 17-4PH stainless steel, 410 stainless steel, lead, and teflon. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristic with wear for a given material may be sufficient to be used to monitor tool wear.