skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors

Abstract

The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One obvious path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMFmore » pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCm, PuNpAm, PuNp, and Pu.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
919552
Report Number(s):
INL/EXT-07-12472
TRN: US0807389
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
11 - NUCLEAR FUEL CYCLE AND FUEL MATERIALS; AMERICIUM; CURIUM; NEPTUNIUM; NUCLEAR FUELS; NUCLEAR POWER PLANTS; OXIDES; PERFORMANCE; PLUTONIUM; PWR TYPE REACTORS; RECYCLING; STORAGE; TRANSMUTATION; VECTORS; VIABILITY; WATER; Advanced Fuel Cycle Initiative; IMF-Pu; IMF-PuNp; IMF-PuNpAm; IMF-PuNpAmCm; Inert Matrix Fuel; Pressurized Water Reactor; Spent Nuclear Fuel; Transuranics

Citation Formats

M. Asgari, B. Forget, S. Piet, R. Ferrer, and S. Bays. Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors. United States: N. p., 2007. Web. doi:10.2172/919552.
M. Asgari, B. Forget, S. Piet, R. Ferrer, & S. Bays. Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors. United States. doi:10.2172/919552.
M. Asgari, B. Forget, S. Piet, R. Ferrer, and S. Bays. Thu . "Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors". United States. doi:10.2172/919552. https://www.osti.gov/servlets/purl/919552.
@article{osti_919552,
title = {Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors},
author = {M. Asgari and B. Forget and S. Piet and R. Ferrer and S. Bays},
abstractNote = {The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One obvious path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCm, PuNpAm, PuNp, and Pu.},
doi = {10.2172/919552},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF, thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form ofmore » either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCmCf, PuNpAm, PuNp, and Pu. The results of this infinite lattice assembly-wise study using SCALE 5.1 indicate that it may be feasible to recycle TRU in this manner using an otherwise typical PWR assembly without violating peaking factor limits.« less
  • The once-through fuel cycle strategy in the United States for the past six decades has resulted in an accumulation of Light Water Reactor (LWR) Spent Nuclear Fuel (SNF). This SNF contains considerable amounts of transuranic (TRU) elements that limit the volumetric capacity of the current planned repository strategy. A possible way of maximizing the volumetric utilization of the repository is to separate the TRU from the LWR SNF through a process such as UREX+1a, and convert it into fuel for a fast-spectrum Advanced Burner Reactor (ABR). The key advantage in this scenario is the assumption that recycling of TRU inmore » the ABR (through pyroprocessing or some other approach), along with a low capture-to-fission probability in the fast reactor’s high-energy neutron spectrum, can effectively decrease the decay heat and toxicity of the waste being sent to the repository. The decay heat and toxicity reduction can thus minimize the need for multiple repositories. This report summarizes the work performed by the fuel cycle analysis group at the Idaho National Laboratory (INL) to establish the specific technical capability for performing fast reactor fuel cycle analysis and its application to a high-priority ABR concept. The high-priority ABR conceptual design selected is a metallic-fueled, 1000 MWth SuperPRISM (S-PRISM)-based ABR with a conversion ratio of 0.5. Results from the analysis showed excellent agreement with reference values. The independent model was subsequently used to study the effects of excluding curium from the transuranic (TRU) external feed coming from the LWR SNF and recycling the curium produced by the fast reactor itself through pyroprocessing. Current studies to be published this year focus on analyzing the effects of different separation strategies as well as heterogeneous TRU target systems.« less
  • Modifications to the Exxon Nuclear PWR neutronic design calculational methods are presented as well as the results obtained when these improved methods are compared to reactor measurements. The basic PWR design tools remain unchanged; i.e., the XPOSE code is used for generating the basic nuclear parameters, the PDQ-7 code is used for calculating reactivity and x-y power distributions, and the XTG code is used for three-dimensional analysis. The recent start-up experiences at D. C. Cook Unit 1 and H. B. Robinson Unit 2 have provided a significant increase in the data base supporting the current ENC PWR neutronic methods. Themore » verification comparisons contained in the supplement include reactor measurements from D. C. Cook Unit 1, Cycle 2; H. B. Robinson Unit 2, Cycles 4 and 5; Palisades Cycle 2, and R. E. Ginna, Cycle 7.« less
  • Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generationmore » IV program.« less