skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic resonance imaging with an optical atomicmagnetometer

Abstract

Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE Director. Office of Science. Basic EnergySciences
OSTI Identifier:
919513
Report Number(s):
LBNL-60113
Journal ID: ISSN 0027-8424; PNASA6; R&D Project: 508601; BnR: KC0203010; TRN: US0806422
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proceedings of the National Academy ofSciences; Journal Volume: 103; Journal Issue: 34; Related Information: Journal Publication Date: 08/22/2006
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 74 ATOMIC AND MOLECULAR PHYSICS; 62 RADIOLOGY AND NUCLEAR MEDICINE; CRYOGENICS; DETECTION; MAGNETIC FIELDS; MAGNETIC RESONANCE; MAGNETOMETERS; SENSITIVITY; SPIN; TIME RESOLUTION; magnetic resonance imaging optical atomic magnetometry remotedetection low field.

Citation Formats

Xu, Shoujun, Yashchuk, Valeriy V., Donaldson, Marcus H., Rochester, Simon M., Budker, Dmitry, and Pines, Alexander. Magnetic resonance imaging with an optical atomicmagnetometer. United States: N. p., 2006. Web. doi:10.1073/pnas.0605396103.
Xu, Shoujun, Yashchuk, Valeriy V., Donaldson, Marcus H., Rochester, Simon M., Budker, Dmitry, & Pines, Alexander. Magnetic resonance imaging with an optical atomicmagnetometer. United States. doi:10.1073/pnas.0605396103.
Xu, Shoujun, Yashchuk, Valeriy V., Donaldson, Marcus H., Rochester, Simon M., Budker, Dmitry, and Pines, Alexander. Tue . "Magnetic resonance imaging with an optical atomicmagnetometer". United States. doi:10.1073/pnas.0605396103. https://www.osti.gov/servlets/purl/919513.
@article{osti_919513,
title = {Magnetic resonance imaging with an optical atomicmagnetometer},
author = {Xu, Shoujun and Yashchuk, Valeriy V. and Donaldson, Marcus H. and Rochester, Simon M. and Budker, Dmitry and Pines, Alexander},
abstractNote = {Magnetic resonance imaging (MRI) is a noninvasive andversatile methodology that has been applied in many disciplines1,2. Thedetection sensitivity of conventional Faraday detection of MRI depends onthe strength of the static magnetic field and the sample "fillingfactor." Under circumstances where only low magnetic fields can be used,and for samples with low spin density or filling factor, the conventionaldetection sensitivity is compromised. Alternative detection methods withhigh sensitivity in low magnetic fields are thus required. Here we showthe first use of a laser-based atomic magnetometer for MRI detection inlow fields. Our technique also employs remote detection which physicallyseparates the encoding and detection steps3-5, to improve the fillingfactor of the sample. Potentially inexpensive and using a compactapparatus, our technique provides a novel alternative for MRI detectionwith substantially enhanced sensitivity and time resolution whileavoiding the need for cryogenics.},
doi = {10.1073/pnas.0605396103},
journal = {Proceedings of the National Academy ofSciences},
number = 34,
volume = 103,
place = {United States},
year = {Tue May 09 00:00:00 EDT 2006},
month = {Tue May 09 00:00:00 EDT 2006}
}
  • We present a device for spin-exchange optical pumping system to produce large quantities of polarized noble gases for Magnetic Resonance Imaging (MRI). A method and design of apparatus for pumping the polarization of noble gases is described. The method and apparatus enable production, storage and usage of hyperpolarized noble gases for different purposes, including Magnetic Resonance Imaging of human and animal subjects. Magnetic imaging agents breathed into lungs can be observed by the radio waves of the MRI scanner and report back physical and functional information about lung's health and desease. The technique known as spin exchange optical pumping ismore » used. Nuclear magnetic resonance is implemented to measure the polarization of hyperpolarized gas. The cells prepared and sealed under high vacuum after handling Alkali metals into the cell and filling with the {sup 3}He-N{sub 2} mixture. The cells could be refilled. The {sup 3}He reaches around 50% polarization in 5-15 hours.« less
  • Purpose: Endorectal (ER) coil-based magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) is often used to obtain anatomic and metabolic images of the prostate and to accurately identify and assess the intraprostatic lesions. Recent advancements in high-field (3 Tesla or above) MR techniques affords significantly enhanced signal-to-noise ratio and makes it possible to obtain high-quality MRI data. In reality, the use of rigid or inflatable endorectal probes deforms the shape of the prostate gland, and the images so obtained are not directly usable in radiation therapy planning. The purpose of this work is to apply a narrow bandmore » deformable registration model to faithfully map the acquired information from the ER-based MRI/MRSI onto treatment planning computed tomography (CT) images. Methods and Materials: A narrow band registration, which is a hybrid method combining the advantages of pixel-based and distance-based registration techniques, was used to directly register ER-based MRI/MRSI with CT. The normalized correlation between the two input images for registration was used as the metric, and the calculation was restricted to those points contained in the narrow bands around the user-delineated structures. The narrow band method is inherently efficient because of the use of a priori information of the meaningful contour data. The registration was performed in two steps. First, the two input images were grossly aligned using a rigid registration. The detailed mapping was then modeled by free form deformations based on B-spline. The limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS), which is known for its superior performance in dealing with high-dimensionality problems, was implemented to optimize the metric function. The convergence behavior of the algorithm was studied by self-registering an MR image with 100 randomly initiated relative positions. To evaluate the performance of the algorithm, an MR image was intentionally distorted, and an attempt was then made to register the distorted image with the original one. The ability of the algorithm to recover the original image was assessed using a checkerboard graph. The mapping of ER-based MRI onto treatment planning CT images was carried out for two clinical cases, and the performance of the registration was evaluated. Results: A narrow band deformable image registration algorithm has been implemented for direct registration of ER-based prostate MRI/MRSI and CT studies. The convergence of the algorithm was confirmed by starting the registration experiment from more than 100 different initial conditions. It was shown that the technique can restore an MR image from intentionally introduced deformations with an accuracy of approximately 2 mm. Application of the technique to two clinical prostate MRI/CT registrations indicated that it is capable of producing clinically sensible mapping. The whole registration procedure for a complete three-dimensional study (containing 256 x 256 x 64 voxels) took less than 15 min on a standard personal computer, and the convergence was usually achieved in fewer than 100 iterations. Conclusions: A deformable image registration procedure suitable for mapping ER-based MRI data onto planning CT images was presented. Both hypothetical tests and patient studies have indicated that the registration is reliable and provides a valuable tool to integrate the ER-based MRI/MRSI information to guide prostate radiation therapy treatment.« less
  • Purpose: To evaluate whether pretreatment combined endorectal magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) findings are predictive of outcome in patients who undergo external beam radiotherapy for prostate cancer. Methods and Materials: We retrospectively identified 67 men with biopsy-proven prostate cancer who underwent combined endorectal MRI and MRSI at our institution between January 1998 and October 2003 before whole-pelvis external beam radiotherapy. A single reader recorded tumor presence, stage, and metabolic abnormality at combined MRI and MRSI. Kaplan-Meier survival and Cox univariate and multivariate analyses explored the relationship between clinical and imaging variables and outcome, using biochemicalmore » or metastatic failure as endpoints. Results: After a mean follow-up of 44 months (range, 3-96), 6 patients developed both metastatic and biochemical failure, with an additional 13 patients developing biochemical failure alone. Multivariate Cox analysis demonstrated that the only independent predictor of biochemical failure was the volume of malignant metabolism on MRSI (hazard ratio [HR] 1.63, 95% confidence interval [CI] 1.29-2.06; p < 0.0001). The two independent predictors of metastatic failure were MRI tumor size (HR 1.34, 95% CI 1.03-1.73; p = 0.028) and the finding of seminal vesicle invasion on MRI (HR 28.05, 95% CI 3.96-198.67; p = 0.0008). Conclusions: In multivariate analysis, MRI and MRSI findings before EBRT in patients with prostate cancer are more accurate independent predictors of outcome than clinical variables, and in particular, the findings of seminal vesicle invasion and extensive tumor predict a worse prognosis.« less
  • The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. Themore » guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.« less
  • In this article, we study in vitro evaluation of needle artefacts and image quality for musculoskeletal laser-interventions in an open high-field magnetic resonance imaging (MRI) scanner at 1.0T with vertical field orientation. Five commercially available MRI-compatible puncture needles were assessed based on artefact characteristics in a CuSO4 phantom (0.1%) and in human cadaveric lumbar spines. First, six different interventional sequences were evaluated with varying needle orientation to the main magnetic field B0 (0{sup o} to 90{sup o}) in a sequence test. Artefact width, needle-tip error, and contrast-to-noise ratio (CNR) were calculated. Second, a gradient-echo sequence used for thermometric monitoring wasmore » assessed and in varying echo times, artefact width, tip error, and signal-to-noise ratio (SNR) were measured. Artefact width and needle-tip error correlated with needle material, instrument orientation to B0, and sequence type. Fast spin-echo sequences produced the smallest needle artefacts for all needles, except for the carbon fibre needle (width <3.5 mm, tip error <2 mm) at 45{sup o} to B0. Overall, the proton density-weighted spin-echo sequences had the best CNR (CNR{sub Muscle/Needle} >16.8). Concerning the thermometric gradient echo sequence, artefacts remained <5 mm, and the SNR reached its maximum at an echo time of 15 ms. If needle materials and sequences are accordingly combined, guidance and monitoring of musculoskeletal laser interventions may be feasible in a vertical magnetic field at 1.0T.« less