skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility

Abstract

The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foodsmore » plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental energy use, identify areas for detailed analysis, perform a detailed analysis for several of the opportunities identified, and support the development of an energy strategy for the facility. The team consisted of Pace Global Energy Services, LLC; Hudson Technologies Company; Rocky Research, Inc.; and W.J. Turpish and Associates. The project used a systematic approach to complete a plant-wide energy efficiency assessment at the Mt Pleasant Facility. Major energy consuming equipment and processes were determined and opportunities for high annual savings potential were targeted for further evaluation. Exhibit 1 below summarizes the major savings opportunities at the site. The total energy savings represent 14% of the energy consumed on site on an MMBtu basis, with 12% of total energy savings achievable in projects with less than a two year payback. Pace Global Energy Services, LLC of Fairfax, Virginia provided the analysis of departmental energy use, identification of areas for detailed analysis, and support for the development of an energy strategy for the facility. Hudson Technologies Company analyzed the combustion and steam systems to identify opportunities for economic heat recovery and improvement in boiler operations. Rocky Research, Inc analyzed the refrigeration systems and W.J. Turpish and Associates reviewed the cooling towers and evaporative condensers.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pilgrim's Pride Corporation, Mt Pleasant, TX; Pace Global Energy Services, Fairfax, VA; Hudson Technologies Company, Pearl River, NY; Rocky Research, Boulder City, Nevada; W.J. Turpish and Associates, Shelby, NC
Sponsoring Org.:
USDOE Office of Industrial Technologies (OIT) - (EE-20)
OSTI Identifier:
918832
Report Number(s):
DOE/GO/15099
TRN: US200825%%165
DOE Contract Number:
FG36-05GO15099
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; AWARDS; COOLING TOWERS; EFFICIENCY; ENERGY EFFICIENCY; HEAT RECOVERY; STEAM SYSTEMS; Energy Assessment; Energy Efficiency; Plant Wide; Departmental Energy Use Analysis; Energy Strategy Development; Steam & Waste Heat Recovery Systems Savings Assessment; Cooling Systems

Citation Formats

Paper, Riyaz, Dooley, Bill, Turpish, William J, Symonds, Mark, and Carswell, Needham. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility. United States: N. p., 2007. Web. doi:10.2172/918832.
Paper, Riyaz, Dooley, Bill, Turpish, William J, Symonds, Mark, & Carswell, Needham. DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility. United States. doi:10.2172/918832.
Paper, Riyaz, Dooley, Bill, Turpish, William J, Symonds, Mark, and Carswell, Needham. Fri . "DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility". United States. doi:10.2172/918832. https://www.osti.gov/servlets/purl/918832.
@article{osti_918832,
title = {DOE/Industrial Technologies Program DOE Award Number DE-FG36-05GO15099 Plant Wide Energy Efficiency Assessment Pilgrims Pride Corporation – Mt Pleasant Facility},
author = {Paper, Riyaz and Dooley, Bill and Turpish, William J and Symonds, Mark and Carswell, Needham},
abstractNote = {The U. S. Department of Energy’s (DOE) Industrial Technologies Program (ITP), through Oak Ridge National Laboratory, is supporting plant wide energy efficiency assessments that will lead to substantial improvements in industrial efficiency, waste reduction, productivity, and global competitiveness in industries identified in ITP’s Industries of the Future. The stated goal of the assessments is to develop a comprehensive strategy at manufacturing locations that will significantly increase plant productivity, profitability, and energy efficiency, and reduce environmental emissions. ITP awarded a contract to Pilgrim’s Pride Corporation to conduct a plant wide energy efficiency assessment for their Mt Pleasant Facility in Mt Pleasant, Texas. Pilgrim’s Pride Corporation is the largest poultry company in the U.S. and Mexico producing nearly 9 billion pounds of poultry per year. Pilgrim's Pride products are sold to foodservice, retail and frozen entrée customers. Pilgrim's Pride owns and operates 37 chicken processing plants (34 in the U.S. and three in Mexico), 12 prepared foods plants and one turkey processing plant. Thirty-five feed mills and 49 hatcheries support these plants. Pilgrim's Pride is ranked number 382 on 2006's FORTUNE 500 list and net sales were $7.4 billion. In Mt. Pleasant, Texas, Pilgrim's Pride operates one of the largest prepared foods plants in the United States, with the capability of producing 2,000 different products and the capacity to turn out more than 7 million pounds of finished goods per week. The facility is divided into distinct departments: East Kill, West Kill, Prepared Foods, Protein Conversion, Wastewater Treatment, and Truck Shop. Facility processes include killing, eviscerating, refrigeration, baking, frying, and protein conversion. Pilgrim’s Pride formed a team to complete the plant wide energy efficiency assessment. The scope of work for this project was to: provide the analysis of departmental energy use, identify areas for detailed analysis, perform a detailed analysis for several of the opportunities identified, and support the development of an energy strategy for the facility. The team consisted of Pace Global Energy Services, LLC; Hudson Technologies Company; Rocky Research, Inc.; and W.J. Turpish and Associates. The project used a systematic approach to complete a plant-wide energy efficiency assessment at the Mt Pleasant Facility. Major energy consuming equipment and processes were determined and opportunities for high annual savings potential were targeted for further evaluation. Exhibit 1 below summarizes the major savings opportunities at the site. The total energy savings represent 14% of the energy consumed on site on an MMBtu basis, with 12% of total energy savings achievable in projects with less than a two year payback. Pace Global Energy Services, LLC of Fairfax, Virginia provided the analysis of departmental energy use, identification of areas for detailed analysis, and support for the development of an energy strategy for the facility. Hudson Technologies Company analyzed the combustion and steam systems to identify opportunities for economic heat recovery and improvement in boiler operations. Rocky Research, Inc analyzed the refrigeration systems and W.J. Turpish and Associates reviewed the cooling towers and evaporative condensers.},
doi = {10.2172/918832},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Apr 13 00:00:00 EDT 2007},
month = {Fri Apr 13 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • PPG and West Virginia University performed a plantwide energy assessment at the PPG’s Natrium, WV chemical plant, an energy-intensive manufacturing facility producing chlor-alkali and related products. Implementation of all the assessment recommendations contained in this report could reduce plant energy consumption by 8.7%, saving an estimated 10,023,192 kWh/yr in electricity, 6,113 MM Btu/yr in Natural Gas, 401,156 M lb/yr in steam and 23,494 tons/yr in coal and reduce carbon dioxide emissions by 241 mm lb/yr. The total cost savings would amount to approximately $2.9 mm/yr. Projects being actively implemented will save $1.7 mm/yr; the remainder are undergoing more detailed engineeringmore » study.« less
  • The MIT Clean Energy Prize was established to accelerate the pace of innovation in the energy space, specifically with regard to clean energy and to reduce our dependence on foreign oil. Through a prize structure designed to incent new ideas to be brought forward coupled with a supporting infrastructure to educate, mentor, network and provide a platform for visibility, it was believed we could achieve this goal in a very efficient and effective manner. The grand prize of $200K was meant to be the highly visible and attractive carrot to achieve this and through a public-private partnership of sponsors whomore » held a long term view (i.e., they were not Venture Capitalists or law firms looking for short term business through advantaged deal flow). It was also designed to achieve this in a highly inclusive manner. Towards this end, while MIT was the platform on which the competition was run, and this brought some instant cache and differentiation, the competition was open to all teams which had at least one US citizen. Both professional teams and student teams were eligible.« less
  • Alcoa completed an energy assessment of its Engineered Products aluminum extrusion facility in Plant City, Florida, in 2001. The company identified energy conservation opportunities throughout the plant and prepared a report as an example for performing energy assessments at similar Alcoa facilities. If implemented, the cost of energy for the plant would be reduced by more than$800,000 per year by conserving 3 million kWh of electricity and 150,000 MMBtu of natural gas.
  • Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadosemore » zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the proposed bioremediation technique at a contaminated site located within the 100-N area of the Hanford, Washington site **Assessing the role of nitrification on the persistence of precipitated calcite by modifying primers for identification of the amoA gene region of various ammonia oxidizing bacteria (AOB) for characterizing AOB in the field« less
  • The following pages describe the high energy physics program at the University of Arizona which was funded by DOE grant DE-FG03-95ER40906, for the period 1 February 1995 to 31 January 2004. In this report, emphasis was placed on more recent accomplishments. This grant was divided into two tasks, a theory task (Task A) and an experimental task (Task B but called Task C early in the grant period) with separate budgets. Faculty supported by this grant, for at least part of this period, include, for the theory task, Adrian Patrascioiu (now deceased), Ina Sarcevic, and Douglas Toussaint., and, for themore » experimental task, Elliott Cheu, Geoffrey Forden, Kenneth Johns, John Rutherfoord, Michael Shupe, and Erich Varnes. Grant monitors from the Germantown DOE office, overseeing our grant, changed over the years. Dr. Marvin Gettner covered the first years and then he retired from the DOE. Dr. Patrick Rapp worked with us for just a few years and then left for a position at the University of Puerto Rico. Dr. Kathleen Turner took his place and continues as our grant monitor. The next section of this report covers the activities of the theory task (Task A) and the last section the activities of the experimental task (Task B).« less