skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit

Abstract

Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser duemore » to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.« less

Authors:
; ; ;  [1]
  1. (REM Engineering Services)
Publication Date:
Research Org.:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, and Morgantown, WV
Sponsoring Org.:
USDOE - Office of Fossil Energy (FE)
OSTI Identifier:
915486
Report Number(s):
DOE/NETL-IR-2007-146
TRN: US200817%%380
DOE Contract Number:
None cited
Resource Type:
Conference
Resource Relation:
Conference: 12th International Conference on Fluidization - New Horizons in Fluidization Engineering, Vancouver, BC, Canada, May 13-17, 2007
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 42 ENGINEERING; CIRCULATING SYSTEMS; FLUIDIZED BEDS; GLASS; OPTICAL FIBERS; TWO-PHASE FLOW; FLOW RATE

Citation Formats

Mei, J.S., Shadle, L.J., Yue, P.C., and Monazam, E.R.. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit. United States: N. p., 2007. Web.
Mei, J.S., Shadle, L.J., Yue, P.C., & Monazam, E.R.. Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit. United States.
Mei, J.S., Shadle, L.J., Yue, P.C., and Monazam, E.R.. Mon . "Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit". United States. doi:. https://www.osti.gov/servlets/purl/915486.
@article{osti_915486,
title = {Flow Regime Study in a High Density Circulating Fluidized Bed Riser with an Abrupt Exit},
author = {Mei, J.S. and Shadle, L.J. and Yue, P.C. and Monazam, E.R.},
abstractNote = {Flow regime study was conducted in a 0.3 m diameter, 15.5 m height circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U.S. Department of Energy. Local particle velocities were measured at various radial positions and riser heights using an optical fiber probe. On-line measurement of solid circulating rate was continuously recorded by the Spiral. Glass beads of mean diameter 61 μm and particle density of 2,500 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 3 to 7.6 m/s and solid mass flux from 20 to 550 kg/m2-s. At a constant riser gas velocity, transition from fast fluidization to dense suspension upflow (DSU) regime started at the bottom of the riser with increasing solid flux. Except at comparatively low riser gas velocity and solid flux, the apparent solid holdup at the top exit region was higher than the middle section of the riser. The solid fraction at this top region could be much higher than 7% under high riser gas velocity and solid mass flux. The local particle velocity showed downward flow near the wall at the top of the riser due to its abrupt exit. This abrupt geometry reflected the solids and, therefore, caused solid particles traveling downward along the wall. However, at location below, but near, the top of the riser the local particle velocities were observed flowing upward at the wall. Therefore, DSU was identified in the upper region of the riser with an abrupt exit while the fully developed region, lower in the riser, was still exhibiting core-annular flow structure. Our data were compared with the flow regime boundaries proposed by Kim et al. [1] for distinguishing the dilute pneumatic transport, fast fluidization, and DSU.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Flow regime study was conducted in a 0.3 m diameter, 15.5 m tall circulating fluidized bed (CFB) riser with an abrupt exit at the National Energy Technology Laboratory of the U. S. Department of Energy. A statistical designed test series was conducted including four (4) operating set points and a duplicated center point (therefore a total of 6 operating set points). Glass beads of mean diameter 200 μm and particle density of 2,430 kg/m3 were used as bed material. The CFB riser was operated at various superficial gas velocities ranging from 5.6 to 7.6 m/s and solid mass flux frommore » a low of 86 to a high of 303 kg/m2-s. Results of the apparent solids fraction profile as well as the radial particle velocity profile were analyzed in order to identify the presence of Dense Suspension Upflow (DSU) conditions. DSU regime was found to exist at the bottom of the riser, while the middle section of the riser was still exhibiting core-annular flow structure. Due to the abrupt geometry of the exit, the DSU regime was also found at the top of the riser. In addition the effects of the azimuthal angle, riser gas velocity, and mass solids flux on the particle velocity were investigated and are discussed in this paper.« less
  • The local gas velocity and the intensity of the gas turbulence in a gas/solid flow are a required measurement in validating the gas and solids flow structure predicted by computational fluid dynamic (CFD) models in fluid bed and transport reactors. The high concentration and velocities of solids, however, make the use of traditional gas velocity measurement devices such as pitot tubes, hot wire anemometers and other such devices difficult. A method of determining these velocities has been devised at the National Energy Technology Laboratory employing tracer gas. The technique developed measures the time average local axial velocity gas component ofmore » a gas/solid flow using an injected tracer gas which induces changes in the heat transfer characteristics of the gas mixture. A small amount of helium is injected upstream a known distance from a self-heated thermistor. The thermistor, protected from the solids by means of a filter, is exposed to gases that are continuously extracted from the flow. Changes in the convective heat transfer characteristics of the gas are indicated by voltage variations across a Wheatstone bridge. When pulsed injections of helium are introduced to the riser flow the change in convective heat transfer coefficient of the gas can be rapidly and accurately determined with this instrument. By knowing the separation distance between the helium injection point and the thermistor extraction location as well as the time delay between injection and detection, the gas velocity can easily be calculated. Variations in the measured gas velocities also allow the turbulence intensity of the gas to be estimated.« less
  • Computational fluid dynamics (CFD) packages (CFX and Fluent) governing equations were modified using kinetic theory for cohesive and non-cohesive particles of different sizes, and used to simulate 2-dimensional and 3-dimensional transient gas/particle flow behavior using FCC particles in the riser section of a circulating fluidized bed. The calculated solid flux velocity and pressure drop agreed reasonably well with the experimental data obtained using laser doppler anemometer and large-scale experiments.
  • A series of experiments was conducted in the 0.3 meter diameter circulating fluidized bed test facility at the National Energy Technology Laboratory (NETL) of the U. S. Department of Energy. The particle used in this study was a coarse, light material, cork, which has a particle density of 189 kg/m{sup 3} and a mean diameter of 812 {mu}m. Fluidizing this material in ambient air approximates the same gas-solids density ratio as coal and coal char in a pressurized gasifier. The purpose of this study is twofold. First, this study is to provide a better understanding on the fundamentals of flowmore » regimes and their transitions. The second purpose of this study is to generate reliable data to validate the mathematical models, which are currently under development at NETL. This paper presents and discusses the data, which covered operating flow regime from dilute phase, fast fluidization, and to dense phase transport by varying the solid flux, G{sub s}. at a constant gas velocity, U{sub g}. Data are presented by mapping the flow regime for coarse cork particles in a {Delta}P/{Delta} L-G{sub s}-U{sub g} plot. A stable operation can be obtained at a fixed riser gas velocity higher than the transport velocity e.g., at U{sub g} = 3.2 m/s, even though the riser is operated within the fast fluidization flow regime. Depending upon the solids influx, the riser can also be operated at dilute phase or dense phase flow regimes. Experimental data were compared to empirical correlations in published literature for flow regime boundaries as well as solids, fractions in the upper dilute and the lower dense regions for fast fluidization flow regime. Comparisons of measured data with these empirical correlations show rather poor agreements. These discrepancies, however, are not surprising since the correlations for these transitions were derived from experimental data of comparative heavier materials such as sands, FCC, iron ore etc.« less
  • Dynamical tests have been applied to fiber optic data taken from a cold-flow circulating fluidized bed to characterize flow conditions, identify three time and/or length scales (macro, meso, and micro), and understand the contribution these scales have on the raw data. The characteristic variable analyzed is the raw voltage signal obtained from a fiber-optic probe taken at various axial and radial positions under different loading conditions so that different flow regimes could be attained. These experiments were carried out with the bed material of 812 μm cork particles. The characterization was accomplished through analysis of the distribution of the signalmore » through the third and fourth moments of skewness and excess kurtosis. A generalization of the autocorrelation function known as the average mutual information function was analyzed by examining the function’s first minimum, identifying the point at which successive elements are no longer correlated. Further characterization was accomplished through the correlation dimension, a measure of the complexity of the attractor. Lastly, the amount of disorder of the system is described by a Kolmogorov-type entropy estimate. All six aforementioned tests were also implemented on ten levels of detail coefficients resulting from a discrete wavelet transformation of the same signal as used above. Through this analysis it is possible to identify and describe micro (particle level), meso (clustering or turbulence level), and macro (physical or dimensional level) length scales even though some literature considers these scales inseparable [6]. This investigation also used detail wavelet coefficients in conjunction with ANOVA analysis to show which scales have the most impact on the raw signal resulting from local hydrodynamic conditions.« less