skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Complexation of Pb(II) on Amorphous Iron Oxide and Manganese Oxide: Spectroscopic and Time Studies

Journal Article · · J. Colloid Interface Sci.

Hydrous Fe and Mn oxides (HFO and HMO) are important sinks for heavy metals and Pb(II) is one of the more prevalent metal contaminants in the environment. In this work, Pb(II) sorption to HFO (Fe{sub 2}O{sub 3}{center_dot}nH{sub 2}O, n=1-3) and HMO (MnO{sub 2}) surfaces has been studied with EXAFS: mononuclear bidentate surface complexes were observed on FeO{sub 6} (MnO{sub 6}) octahedra with Pb{single_bond}O distance of 2.25-2.35 Angstroms and Pb{single_bond}Fe(Mn) distances of 3.29-3.36 (3.65-3.76) Angstroms. These surface complexes were invariant of pH 5 and 6, ionic strength 2.8x10{sup -3} to 1.5x10{sup -2}, loading 2.03x10{sup -4} to 9.1 x 10{sup -3} mol Pb/g, and reaction time up to 21 months. EXAFS data at the Fe K-edge revealed that freshly precipitated HFO exhibits short-range order; the sorbed Pb(II) ions do not substitute for Fe but may inhibit crystallization of HFO. Pb(II) sorbed to HFO through a rapid initial uptake ({approx}77%) followed by a slow intraparticle diffusion step ({approx}23%) resulting in a surface diffusivity of 2.5x10{sup -15} cm{sup 2}/s. Results from this study suggest that mechanistic investigations provide a solid basis for successful adsorption modeling and that inclusion of intraparticle surface diffusion may lead to improved geochemical transport depiction.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
914129
Report Number(s):
BNL-78697-2007-JA; JCISA5; TRN: US0801562
Journal Information:
J. Colloid Interface Sci., Vol. 299, Issue 1-3; ISSN 0021-9797
Country of Publication:
United States
Language:
English