skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein

Abstract

Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct a-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest a possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
914013
Report Number(s):
BNL-78581-2007-JA
TRN: US0801473
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Structure; Journal Volume: 14; Journal Issue: 5
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 43 PARTICLE ACCELERATORS; CELL MEMBRANES; CRYSTAL STRUCTURE; GLYCOPROTEINS; MEMBRANES; PROTEINS; TARGETS; THERMODYNAMICS; NSLS; national synchrotron light source

Citation Formats

Deng,Y., Liu, J., Zheng, Q., Yong, W., and Lu, M. Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein. United States: N. p., 2006. Web. doi:10.1016/j.str.2006.03.007.
Deng,Y., Liu, J., Zheng, Q., Yong, W., & Lu, M. Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein. United States. doi:10.1016/j.str.2006.03.007.
Deng,Y., Liu, J., Zheng, Q., Yong, W., and Lu, M. Sun . "Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein". United States. doi:10.1016/j.str.2006.03.007.
@article{osti_914013,
title = {Structures and Polymorphic Interactions of Two Heptad-Repeat Regions of the SARS Virus S2 Protein},
author = {Deng,Y. and Liu, J. and Zheng, Q. and Yong, W. and Lu, M.},
abstractNote = {Entry of SARS coronavirus into its target cell requires large-scale structural transitions in the viral spike (S) glycoprotein in order to induce fusion of the virus and cell membranes. Here we describe the identification and crystal structures of four distinct a-helical domains derived from the highly conserved heptad-repeat (HR) regions of the S2 fusion subunit. The four domains are an antiparallel four-stranded coiled coil, a parallel trimeric coiled coil, a four-helix bundle, and a six-helix bundle that is likely the final fusogenic form of the protein. When considered together, the structural and thermodynamic features of the four domains suggest a possible mechanism whereby the HR regions, initially sequestered in the native S glycoprotein spike, are released and refold sequentially to promote membrane fusion. Our results provide a structural framework for understanding the control of membrane fusion and should guide efforts to intervene in the SARS coronavirus entry process.},
doi = {10.1016/j.str.2006.03.007},
journal = {Structure},
number = 5,
volume = 14,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • Human respiratory syncytial virus (hRSV) membrane fusion is promoted by the formation of a trimer-of-hairpins structure that brings the amino- and carboxyl-terminal regions of fusion (F) protein into close proximity. Two heptad-repeat (HR1 and HR2) regions in F protein play an important role in this process. Our previous study demonstrated that peptides derived from HR1 and HR2 regions of F protein were potent inhibitors of hRSV entry. Here we showed that HR1 peptide and its analog denoted 5-Helix which contained a central coiled-coil formed by three HR1s could induce highly potent antibody response in the immunized rabbits. Both antibodies couldmore » recognize F1 domain of the F protein and inhibited hRSV entry with the neutralizing antibody titers of 1:61 and 1:115, respectively. These suggested that 5-Helix could induce potent neutralizing antibody response and the central coiled-coil might be a highly conserved neutralization site for hRSV F protein.« less
  • The human immunodeficiency virus (HIV-1) transmembrane envelope glycoprotein, gp41, which mediates virus-cell fusion, exists in at least three different conformations within the trimeric envelope glycoprotein complex. The structures of the prefusogenic and intermediate states are unknown; structures representing the postfusion state have been solved. In the postfusion conformation, three helical heptad repeat 2 (HR2) regions pack in an antiparallel fashion into the hydrophobic grooves on the surface of a triple-helical coiled coil formed by the heptad repeat 1 (HR1) regions. We studied the prefusogenic conformation of gp41 by mutagenic alteration of membrane-anchored and soluble forms of the HIV-1 envelope glycoproteins.more » Our results indicate that, in the HIV-1 envelope glycoprotein precursor, the gp41 HR1 region is in a conformation distinct from that of a trimeric coiled coil. Thus, the central gp41 coiled coil is formed during the transition of the HIV-1 envelope glycoproteins from the precursor state to the receptor-bound intermediate.« less
  • Two {alpha}-helical heptad repeats, N-HR and C-HR, located in the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, play an important role in membrane fusion by forming a 6-helix bundle. C34, a peptide mimicking C-HR, inhibits the formation of the 6-helix bundle; thus, it has potential as a novel antiretroviral compound. In order to improve the inhibitory effect of C34 on HIV-1 replication, we designed new C34-derived peptides based on computational analysis of the stable conformation of the 6-helix bundle. Newly designed peptides showed a stronger inhibitory effect on the replication of recombinant viruses containing CRF01{sub A}E, subtype Bmore » or subtype C Env than C34 or a fusion inhibitor, T-20. In addition, these peptides inhibited the replication of a T-20-resistant virus. We propose that these peptides could be applied to develop novel antiretroviral compounds to inhibit the replication of various subtypes of HIV-1 as well as of T-20-resistant variants.« less
  • The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins,more » four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that {alpha}-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.« less
  • Mixed virus infections can cause livestock losses that are more devastating than those caused by single virus infections. Newcastle disease virus (NDV) and infectious bronchitis virus (IBV), serious threats to the poultry industry, can give rise to complex mixed infections that hinder diagnosis and prevention. In this study, we show that newly designed peptides, which are based on the heptad repeat (HR) region of the fusion glycoproteins from NDV and IBV, have more potent antiviral activity than the mother HR peptides. Plaque formation and chicken embryo infectivity assays confirmed these results. The novel peptides completely inhibited single virus infections andmore » mixed infections caused by NDV and IBV. Furthermore, we assessed cell toxicity and possible targets for the peptides, thereby strengthening the notion that HR2 is an attractive site for therapeutic intervention. These results suggest the possibility of designing a relatively broad-spectrum class of antiviral peptides that can reduce the effects of mixed-infections.« less