skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy

Abstract

Methodological constraints limit the extent to which existing soil aggregation models explain carbon (C) stabilization in soil. We hypothesize that the physical infrastructure of microaggregates plays a major role in determining the chemistry of the occluded C and intimate associations between particulate C, chemically stabilized C and the soil mineral matrix. We employed synchrotron-based scanning transmission X-ray microscopy (STXM) coupled with near-edge X-ray absorption fine structure (C 1s-NEXAFS) spectroscopy to investigate the nanoscale physical assemblage and C chemistry of 150-{micro}m microaggregates from a Kenyan Oxisol. Ultra-thin sections were obtained after embedding microaggregates in a sulfur block and sectioning on a cryo-microtome at -55 degrees C. Principal component and cluster analyses revealed four spatially distinct features: pore surfaces, mineral matter, organic matter, and their mixtures. The occurrence of these features did not vary between exterior and interior locations; however, the degree of oxidation decreased while the complexity and occurrence of aliphatic C forms increased from exterior to interior regions of the microaggregate. At both locations, compositional mapping rendered a nanoscale distribution of oxidized C clogging pores and coating pore cavities on mineral surface. Hydrophobic organic matter of aromatic and aliphatic nature, representing particulate C forms appeared physically occluded in 2- tomore » 5-{micro}m pore spaces. Our findings demonstrate that organic matter in microaggregates may be found as either oxidized C associated with mineral surfaces or aromatic and aliphatic C in particulate form. Using STXM and C 1s-NEXAFS we are for the first time able to resolve the nanoscale biogeocomplexity of unaltered soil microaggregates.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
913987
Report Number(s):
BNL-78555-2007-JA
Journal ID: ISSN 0361-5995; SSSJD4; TRN: US0801454
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Soil Sci. Soc. Am. J.; Journal Volume: 70; Journal Issue: 5
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; FINE STRUCTURE; MICROSCOPY; ORGANIC MATTER; SOILS; SPECTROSCOPY; NSLS; national synchrotron light source

Citation Formats

Kinyangi,J., Solomon, D., Liang, B., Lerotic, M., Wirick, S., and Lehmann, J.. Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy. United States: N. p., 2006. Web. doi:10.2136/sssaj2005.0351.
Kinyangi,J., Solomon, D., Liang, B., Lerotic, M., Wirick, S., & Lehmann, J.. Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy. United States. doi:10.2136/sssaj2005.0351.
Kinyangi,J., Solomon, D., Liang, B., Lerotic, M., Wirick, S., and Lehmann, J.. Sun . "Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy". United States. doi:10.2136/sssaj2005.0351.
@article{osti_913987,
title = {Nanoscale Biogeocomplexity of the Organomineral Assemblage in Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy},
author = {Kinyangi,J. and Solomon, D. and Liang, B. and Lerotic, M. and Wirick, S. and Lehmann, J.},
abstractNote = {Methodological constraints limit the extent to which existing soil aggregation models explain carbon (C) stabilization in soil. We hypothesize that the physical infrastructure of microaggregates plays a major role in determining the chemistry of the occluded C and intimate associations between particulate C, chemically stabilized C and the soil mineral matrix. We employed synchrotron-based scanning transmission X-ray microscopy (STXM) coupled with near-edge X-ray absorption fine structure (C 1s-NEXAFS) spectroscopy to investigate the nanoscale physical assemblage and C chemistry of 150-{micro}m microaggregates from a Kenyan Oxisol. Ultra-thin sections were obtained after embedding microaggregates in a sulfur block and sectioning on a cryo-microtome at -55 degrees C. Principal component and cluster analyses revealed four spatially distinct features: pore surfaces, mineral matter, organic matter, and their mixtures. The occurrence of these features did not vary between exterior and interior locations; however, the degree of oxidation decreased while the complexity and occurrence of aliphatic C forms increased from exterior to interior regions of the microaggregate. At both locations, compositional mapping rendered a nanoscale distribution of oxidized C clogging pores and coating pore cavities on mineral surface. Hydrophobic organic matter of aromatic and aliphatic nature, representing particulate C forms appeared physically occluded in 2- to 5-{micro}m pore spaces. Our findings demonstrate that organic matter in microaggregates may be found as either oxidized C associated with mineral surfaces or aromatic and aliphatic C in particulate form. Using STXM and C 1s-NEXAFS we are for the first time able to resolve the nanoscale biogeocomplexity of unaltered soil microaggregates.},
doi = {10.2136/sssaj2005.0351},
journal = {Soil Sci. Soc. Am. J.},
number = 5,
volume = 70,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • Colloid release and deposition in soils and sorption of inorganic and organic pollutants to soil colloids are strongly influenced by the composition and chemical heterogeneity of colloidal soil particles. To investigate the chemical heterogeneity of organic soil colloids at the particle scale, we used synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy on 49 individual particles isolated from the surface horizons of three forest soils. Stacks of 130 images of each particle were collected at different X-ray energies between 280 and 310 eV. From these image arrays, NEXAFS spectra were obtained for eachmore » pixel and analyzed by principle component analysis and cluster analysis (PCA-CA) to characterize the intraparticle heterogeneity of the organic components. The results demonstrate that the organic matter associated with water-dispersible soil colloids is chemically heterogeneous at the single-particle scale. PCA-CA identified at least two distinct regions within single particles. However, the spectral variations between these regions were much smaller than the variations of averaged NEXAFS spectra representing different particles from the same soil horizon, implying that interparticle heterogeneity is much larger than intraparticle heterogeneity. Especially the contents of aromatic and carboxyl carbon exhibited a large variability. Overall, the NEXAFS spectra of water-dispersible soil colloids were similar to the NEXAFS spectrum of the humic acid fraction, but differed clearly from the fulvic acid and dissolved organic matter fractions extracted from the same soil horizon using conventional techniques.« less
  • We report on the structure of a set of diesel exhaust samples that were obtained from reference diesel fuel and diesel fuel mixed with ferrocene. Characterization was carried out with X-ray absorption spectroscopy (C(1s) NEXAFS) and wide-angle X-ray scattering (WAXS). The reference diesel soot shows a pronounced graphite-like microstructure and molecular structure, with a strong (0 0 2) graphite Bragg reflex and a strong aromatic C{double_bond}C resonance at 285 eV. The mineral matter in the reference soot could be identified as Fe{sub 2}O{sub 3} hematite. The soot specimen from the diesel mixed with ferrocene has an entirely different structure andmore » lacks significantly in graphite-like characteristics. NEXAFS spectra of such soot barely show aromatics but pronounced contributions from aliphatic structures. WAXS patterns show almost no intensity at the Bragg (0 0 2) reflection of graphite, but a strong aliphatic {gamma}-side band. The iron from the ferrocene transforms to Fe{sub 2}O{sub 3} maghemite.« less
  • The influence of cation-induced coagulation on the chemical composition of dissolved and coagulated fractions of humic acid was investigated in batch coagulation experiments for additions of aluminum at pH 4 and 5, iron at pH 4, and calcium and lead at pH 6. The partitioning of organic carbon and metals was determined by analyzing total organic carbon and total metal contents of the dissolved phase. Both the dissolved and the coagulated humic acid fractions were characterized using synchrotron scanning transmission X-ray microscopy (STXM) and C-1s near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. Intensities of {pi}* transitions of carboxyl carbon andmore » {sigma}* transitions of alkyl, O-alkyl, and carboxyl carbon decreased with increasing metal concentration for the dissolved humic acid fractions. This decrease was accompanied by an increase of the respective intensities in the coagulated fraction as shown for lead. Intensities of aromatic and phenolic carbon were affected to a larger extent only by aluminum and iron additions. The changes observed in the C-1s NEXAFS spectra coincided with an increasing removal of organic carbon from the dissolved phase with increasing total metal concentrations. We conclude that humic acid was chemically fractionated by cation-induced coagulation, which preferentially removed functional groups involved in metal-cation binding from solution.« less