skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compositional Depth Profiling of Block Copolymer Surfaces using NEXAFS

Abstract

No abstract prepared.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL) National Synchrotron Light Source
Sponsoring Org.:
Doe - Office Of Science
OSTI Identifier:
913961
Report Number(s):
BNL-78529-2007-JA
TRN: US0801433
DOE Contract Number:
DE-AC02-98CH10886
Resource Type:
Journal Article
Resource Relation:
Journal Name: Polym. Mater. Sci. Eng.; Journal Volume: 94
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; COPOLYMERS; ABSORPTION; FINE STRUCTURE; ELECTRON SPECTROSCOPY; SURFACES; NSLS; national synchrotron light source

Citation Formats

Krishnan,S., Ober, C., Hexemer, A., Kramer, E., and Fischer, D. Compositional Depth Profiling of Block Copolymer Surfaces using NEXAFS. United States: N. p., 2006. Web.
Krishnan,S., Ober, C., Hexemer, A., Kramer, E., & Fischer, D. Compositional Depth Profiling of Block Copolymer Surfaces using NEXAFS. United States.
Krishnan,S., Ober, C., Hexemer, A., Kramer, E., and Fischer, D. Sun . "Compositional Depth Profiling of Block Copolymer Surfaces using NEXAFS". United States. doi:.
@article{osti_913961,
title = {Compositional Depth Profiling of Block Copolymer Surfaces using NEXAFS},
author = {Krishnan,S. and Ober, C. and Hexemer, A. and Kramer, E. and Fischer, D.},
abstractNote = {No abstract prepared.},
doi = {},
journal = {Polym. Mater. Sci. Eng.},
number = ,
volume = 94,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}
  • NEXAFS spectroscopy was used to probe the surface composition and under-water surface reconstruction of thin films of comb-like diblock copolymers with cylindrical and spherical microphases. The polymers consisted of a polystyrene block, and a second block prepared from a styrenic monomer grafted with fluoroalkyl-tagged poly(ethylene glycol) side chains. Compositional depth profiling of the microphase separated block copolymer films, in the top 1-3 nm of the film, was performed to understand the role of block copolymer microstructure and self-assembly on surface composition. Using experimentally determined concentration profiles, the surface concentration of phenyl ring carbon atoms was quantified and compared with thosemore » of homopolymer and random copolymer controls. The carbon atoms from the relatively high surface energy phenyl groups were depleted or excluded from the surface, in favor of the low surface-energy fluoroalkyl groups. While it is expected that block copolymer surfaces will be completely covered by a wetting lamellar layer of the lower surface energy block, a significant amount of the higher surface energy polystyrene block was found to be present in the surface region of the cylinder-forming block copolymer. Evidently, the spontaneous formation of the cylindrical polystyrene microdomains in the near-surface region compensated for the lowering of the free energy that could have been achieved by completely covering the surfaces with a lamellar layer of the lower surface energy fluorinated block. All surfaces underwent molecular reconstruction after immersion in water. The experimental concentration depth profiles indicated an increased surface depletion of phenyl ring carbon atoms in the water-immersed thin films, due to the tendency of hydrophilic PEG side groups to be present at the polymer-water interface. Such a detailed characterization of the outermost layers of the block copolymer surfaces was possible because of the exceptional depth resolution of the NEXAFS depth profiling technique.« less
  • No abstract prepared.
  • Chromium dioxide (CrO{sub 2}) thin film has generated considerable interest in applied research due to the wide variety of its technological applications. It has been extensively investigated in recent years, attracting the attention of researchers working on spintronic heterostructures and in the magnetic recording industry. However, its synthesis is usually a difficult task due to its metastable nature and various synthesis techniques are being investigated. In this work a polycrystalline thin film of CrO{sub 2} was prepared by electron beam vaporization of Cr{sub 2}O{sub 3} onto a Si substrate. The polycrystalline structure was confirmed through XRD analysis. The stoichiometry andmore » elemental depth distribution of the deposited film were measured by ion beam nuclear analytical techniques heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS), which both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Moreover, the analysis carried out highlights the importance of complementary usage of the two techniques to obtain a more complete description of elemental content and depth distribution in thin films. - Graphical abstract: Heavy ion elastic recoil detection analysis (ERDA) and Rutherford backscattering spectrometry (RBS) both have relative advantage over non-nuclear spectrometries in that they can readily provide quantitative information about the concentration and distribution of different atomic species in a layer. Highlights: Black-Right-Pointing-Pointer Thin films of CrO{sub 2} have been grown by e-beam evaporation of Cr{sub 2}O{sub 3} target in vacuum. Black-Right-Pointing-Pointer The composition was determined by heavy ion-ERDA and RBS. Black-Right-Pointing-Pointer HI-ERDA and RBS provided information on the light and heavy elements, respectively.« less
  • The composition profiling of thin TaCN films was studied. For the composition profile determination using x-ray photoemission spectrometry (XPS) in combination with Ar sputtering, preferential sputtering effects of N with respect to Ta and C were found to lead to inaccurate elemental concentrations. Sputter yield calculations for the given experimental conditions allowed for the correction of a part of the error, leading to fair accuracy by reference-free measurements. Further improvement of the accuracy was demonstrated by the calibration of the XPS compositions against elastic recoil detection analysis (ERDA) results. For Auger electron spectrometry (AES) in combination with Ar sputtering, accuratemore » results required the calibration against ERDA. Both XPS and AES allowed for a reliable and accurate determination of the compositional profiles of TaCN-based thin films after calibration. Time-of-flight secondary-ion mass spectrometry was also used to assess the composition of the TaCN films. However, the analysis was hampered by large matrix effects due to small unintentional oxygen contents in the films. Energy-dispersive x-ray spectrometry is also discussed, and it is shown that an accurate reference-free measurement of the average film concentration can be achieved.« less