skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers

Abstract

External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savingsmore » potential for external power adapters and battery chargingsystems through 2025.« less

Authors:
; ;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE; US Environmental Protection Agency. Office ofAtmospheric Programs. Climage Protection PartnershipsDivision
OSTI Identifier:
913165
Report Number(s):
LBNL-62399
R&D Project: 43EZ01; TRN: US200802%%567
DOE Contract Number:
DE-AC02-05CH11231; EPA:DE-AC02-05CH11231
Resource Type:
Conference
Resource Relation:
Conference: 2006 ACEEE Summer Study on Energy Efficiency inBuildings, Pacific Grove, CA, August 13-18, 2006
Country of Publication:
United States
Language:
English
Subject:
32; APPLIANCES; BATTERY CHARGERS; BATTERY CHARGING; ELECTRICITY; ENERGY EFFICIENCY; ENERGY EFFICIENCY STANDARDS; HOUSEHOLDS; POWER SUPPLIES; SPECIFICATIONS; TARGETS; US EPA

Citation Formats

Webber, Carrie, Korn, David, and Sanchez, Marla. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers. United States: N. p., 2007. Web.
Webber, Carrie, Korn, David, & Sanchez, Marla. Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers. United States.
Webber, Carrie, Korn, David, and Sanchez, Marla. Wed . "Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers". United States. doi:. https://www.osti.gov/servlets/purl/913165.
@article{osti_913165,
title = {Savings Potential of ENERGY STAR(R) External Power Adapters andBattery Chargers},
author = {Webber, Carrie and Korn, David and Sanchez, Marla},
abstractNote = {External power adapters may lose 10 to 70 percent of theenergy they consume, dissipated as heat rather than converted into usefulenergy. Battery charging systems have more avenues for losses: inaddition to power conversion losses, power is consumed by the chargingcircuitry, and additional power may be needed after the battery is fullcharged to balance self-discharge. In 2005, the Environmental ProtectionAgency launched a new ENERGY STAR(R) label for external power supplies(EPSs) that convert line-voltage AC electricity into low-voltage DCelectricity for certain electronic devices. The specification includedpower supplies for products with battery charging functions (e.g. laptopsand cell phones), but excluded others. In January 2006, a separatespecification was issued for battery charging systems contained primarilyin small household appliances and power tools. In addition to the ENERGYSTAR(R) label, the state of California will implement minimum energyperformance standards for EPSs in 2007, and similar standards for EPSsand battery chargers are in development at the national level.Many of theproducts covered by these policies use relatively little power and havemodest per-unit savings potential compared to conventional energyefficiency targets. But with an estimated 1.5 billion adapters and 230million battery charging systems in use in the United States, theaggregate savings potential is quite high. This paper presents estimatesof the savings potential for external power adapters and battery chargingsystems through 2025.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Feb 28 00:00:00 EST 2007},
month = {Wed Feb 28 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In the past five years, considerable attention has been focused on the electricity use of office equipment in commercial office buildings. Several groups have monitored energy use of PCs, monitors, printers and fax machines. However, little attention has been paid to monitoring energy use of copiers. Procedures for testing energy usage and usage profiles of copiers are needed to make valid comparisons between machines and to determine overall energy use and potential energy savings. In this paper, the authors present a method to analyze the energy use and usage profiles of copiers. This method is determined through long-term measurements frommore » a Watt-hour meter connected to the copier and by measuring light flashes from the copier. Energy use from the copier can also be estimated by using a test procedure developed by Dandridge. Results from using the long term monitoring methods will be presented for several different sized copiers, and compared to the estimated energy use derived from the American Society for Testing and Materials (ASTM) method. After summarizing these results, the authors determine criteria for a program to recognize energy-efficient copiers. These criteria were submitted as an Energy Star Copier program to the Environmental Protection Agency (EPA). The new Energy Star Copier Program was announced in July 1995, with criteria based on these suggestions. Using the final Energy Star Copier program criteria and this data, the authors determine potential future savings for the program. The ability to automatically turn the copier off at night is the greatest energy-saving feature most copiers can have. The best way to reduce overall office costs is to have the copier set automatically to make double-sided copies.« less
  • In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based onmore » realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)« less
  • In 1993 the US Environmental Protection Agency (EPA) introduced Energy Star{reg{underscore}sign}, a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the US Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. The authors present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. The target market penetration case represents the best estimate of future Energy Star savings. It is based on realisticmore » market penetration goals for each of the products. The authors also provide results under the assumption of 100% market penetration; that is, they assume that all purchasers buy Energy Star-compliant products instead of standard efficiency products throughout the analysis period. Finally, they assess the sensitivity of the target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of Energy Star are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)« less
  • This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuelmore » savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.« less
  • Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade.more » First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.« less