skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core

Abstract

A new non-TRISO fuel and clad design concept is proposed for the prismatic, heliumcooled Very High Temperature Reactor core. The new concept could substantially reduce the current 10-20 wt% TRISO uranium enrichments down to 4-6 wt% for both initial and reload cores. The proposed fuel form would be a high-temperature, high-density uranium ceramic, for example UO2, configured into very small diameter cylindrical rods. The small diameter fuel rods significantly increase core reactivity through improved neutron moderation and fuel lumping. Although a high-temperature clad system for the concept remains to be developed, recent success in tube fabrication and preliminary irradiation testing of silicon carbide (SiC) cladding for light water reactor applications offers good potential for this application, and for future development of other carbide clad designs. A high-temperature ceramic fuel, together with a high-temperature clad material, could also lead to higher thermal safety margins during both normal and transient reactor conditions relative to TRISO fuel. The calculated neutronic results show that the lowenrichment, small diameter fuel rods and low thermal neutron absorbing clad retain the strong negative Doppler fuel temperature coefficient of reactivity that ensures inherent safe operation of the VHTR, and depletion studies demonstrate that an 18-month power cycle canmore » be achieved with the lower enrichment fuel.« less

Authors:
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
912445
Report Number(s):
INL/CON-07-12090
TRN: US0800397
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Conference
Resource Relation:
Conference: 2007 International Congress on Advances in Nuclear Power Plants,Nice, France,05/13/2007,05/18/2007
Country of Publication:
United States
Language:
English
Subject:
21 - SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; CARBIDES; CERAMICS; DESIGN; FABRICATION; FUEL RODS; IRRADIATION; ISOTOPE SEPARATION; NEUTRONS; NUCLEAR POWER PLANTS; REACTOR CORES; SAFETY MARGINS; SILICON CARBIDES; TEMPERATURE COEFFICIENT; TESTING; THERMAL NEUTRONS; TRANSIENTS; URANIUM; WATER; Very High Temperature Reactor, fuel design

Citation Formats

Sterbentz, James W. Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core. United States: N. p., 2007. Web.
Sterbentz, James W. Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core. United States.
Sterbentz, James W. Tue . "Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core". United States. doi:. https://www.osti.gov/servlets/purl/912445.
@article{osti_912445,
title = {Low-Enriched Fuel Design Concept for the Prismatic Very High Temperature Reactor Core},
author = {Sterbentz, James W},
abstractNote = {A new non-TRISO fuel and clad design concept is proposed for the prismatic, heliumcooled Very High Temperature Reactor core. The new concept could substantially reduce the current 10-20 wt% TRISO uranium enrichments down to 4-6 wt% for both initial and reload cores. The proposed fuel form would be a high-temperature, high-density uranium ceramic, for example UO2, configured into very small diameter cylindrical rods. The small diameter fuel rods significantly increase core reactivity through improved neutron moderation and fuel lumping. Although a high-temperature clad system for the concept remains to be developed, recent success in tube fabrication and preliminary irradiation testing of silicon carbide (SiC) cladding for light water reactor applications offers good potential for this application, and for future development of other carbide clad designs. A high-temperature ceramic fuel, together with a high-temperature clad material, could also lead to higher thermal safety margins during both normal and transient reactor conditions relative to TRISO fuel. The calculated neutronic results show that the lowenrichment, small diameter fuel rods and low thermal neutron absorbing clad retain the strong negative Doppler fuel temperature coefficient of reactivity that ensures inherent safe operation of the VHTR, and depletion studies demonstrate that an 18-month power cycle can be achieved with the lower enrichment fuel.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The prismatic block Very High Temperature Reactor (VHTR) is a leading Generation IV reactor concept. This reactor with its relatively low core power density and large graphite mass currently satisfies the fundamental goals of the Generation IV charter. However, modifications can be made to the fuel and clad design, such that (1) VHTR uranium enrichment can be lowered to near commercial-grade pressurized water reactor (PWR) enrichments, (2) fuel burnups are extended, and (3) the thermal safety margin under transient conditions is increased. This paper outlines a possible fuel and clad design concept for use in a VHTR prismatic block coremore » which could lead to substantial improvements in overall VHTR economics and sustainability. The results of depletion calculations here will demonstrate comparable burnup between the new fuel and clad design with only 4-6 wt% enriched uranium and the current higher enriched 10-20 wt% VHTR fuel design. In addition, the new fuel and clad design concept uses high-temperature ceramic fuel and clad materials that have the potential to significantly increase the thermal margin under VHTR transient conditions. The current fuel block design for the VHTR is the hexagonal Fort Saint Vrain (FSV) fuel block with 108 coolant channels, 210 fuel rods, and six burnable poison holes drilled axially in the block. This basic FSV block is also part of the new design concept here. The basic hexagonal block dimensions remain fixed with only the fuel pellet and clad materials and radii changed. Further optimizations of the fuel block are in progress. Currently, the proposed nuclear fuel for the prismatic VHTR is the well-known TRISO-coated particle fuel. The TRISO-coated particle offers a nice spherical, high-integrity pressure vessel containment for the fission gases (SiC layer). However, due to the multiple particle coating layers, the fuel kernel represents only 9.4% of the total particle volume (350 {micro}m kernel diameter particle) and together with the 35% packing fraction limitation in the fuel compacts, uranium loading in the fuel rods is not only very inefficient but, at VHTR uranium loadings, results in a strongly under-moderated condition in the core that translates into a large reactivity and burnup penalty.« less
  • Neutron and gamma-ray flux spectra are calculated using the MCNP5 computer code and a one-sixth core model of a prismatic Very High Temperature Reactor based on the General Atomics Gas Turbine-Modular Helium Reactor. Spectra are calculated in the five inner reflector graphite block rings, three annular active core fuel rings, three outer graphite reflector block rings, and the core barrel. The neutron spectra are block and fuel pin averages and are calculated as a function of temperature and burnup. Also provided are the total, fast, and thermal radial profile fluxes and core barrel dpa rates.
  • The existing study of Spall et al. shows that only {nu}{sup 2}-f turbulence model well matches with the experimental data of Shehata and McEligot which were obtained under strongly heated gas flows. Significant over-predictions in those literatures were observed in the convective heat transfer with the other famous turbulence models such as the k-{epsilon} and k-{omega} models. In spite of such good evidence about the performance of the{nu}{sup 2}-f model, the application of the {nu}{sup 2}-f model to the thermo-fluid analysis of a prismatic core is very rare. In this paper, therefore, the convective heat transfer of the coolant flowmore » in a prismatic core has been investigated using the {nu}{sup 2}-f model. Computational fluid dynamics (CFD) calculations have been carried out for the typical unit cell geometry of a prismatic fuel column with typical operating conditions of prismatic designs. The tested Reynolds numbers of the coolant flow are 10,000, 20,000, 30,000 and 50,000. The predicted Nusselt numbers with the {nu}{sup 2}-f model are compared with the results by the other turbulence models (k-{epsilon} and SST) as well as the empirical correlations. (authors)« less
  • The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less