skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HyPEP FY-07 Report: System Integration Model Development

Abstract

The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

Authors:
; ; ;
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NE
OSTI Identifier:
911957
Report Number(s):
INL/EXT-07-12470
TRN: US0800240
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
99 - GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; COMBINED CYCLES; ELECTRICITY; ELECTROLYSIS; GAS COOLED REACTORS; HYDROGEN; OPTIMIZATION; STEAM

Citation Formats

C. H. Oh, E. S. Kim, S. R. Sherman, and R. Vilim. HyPEP FY-07 Report: System Integration Model Development. United States: N. p., 2007. Web. doi:10.2172/911957.
C. H. Oh, E. S. Kim, S. R. Sherman, & R. Vilim. HyPEP FY-07 Report: System Integration Model Development. United States. doi:10.2172/911957.
C. H. Oh, E. S. Kim, S. R. Sherman, and R. Vilim. Sun . "HyPEP FY-07 Report: System Integration Model Development". United States. doi:10.2172/911957. https://www.osti.gov/servlets/purl/911957.
@article{osti_911957,
title = {HyPEP FY-07 Report: System Integration Model Development},
author = {C. H. Oh and E. S. Kim and S. R. Sherman and R. Vilim},
abstractNote = {The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.},
doi = {10.2172/911957},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept a VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. This report describes component sizing studies and control system strategies for achieving plant production andmore » operability goals for these two reference systems. The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated using an analytic model. A partial load schedule and control system was designed for the integrated plant using a quasi-static simulation. Reactor stability for temperature perturbations in the hydrogen plant was investigated using both a simple analytic method and a dynamic simulation. Potential efficiency improvements over the VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. This work was done using the HYSYS code and results for the HTRC/HTSE system were compared to the VHTR/HTSE system. Integration of the VHTR with SI process plants was begun. Using the ASPEN plus code the efficiency was estimated. Finally, this report describes planning for the validation and verification of the HYPEP code.« less
  • The Very High Temperature Gas-Cooled Reactor (VHTR) coupled to the High Temperature Steam Electrolysis (HTSE) process is one of two reference integrated systems being investigated by the U.S. Department of Energy and Idaho National Laboratory for the production of hydrogen. In this concept the VHTR outlet temperature of 900 °C provides thermal energy and high efficiency electricity for the electrolysis of steam in the HTSE process. In the second reference system the Sulfur Iodine (SI) process is coupled to the VHTR to produce hydrogen thermochemically. In the HyPEP project we are investigating and characterizing these two reference systems with respectmore » to production, operability, and safety performance criteria. Under production, plant configuration and working fluids are being studied for their effect on efficiency. Under operability, control strategies are being developed with the goal of maintaining equipment within operating limits while meeting changes in demand. Safety studies are to investigate plant response for equipment failures. Specific objectives in FY07 were (1) to develop HyPEP Beta and verification and validation (V&V) plan, (2) to perform steady state system integration, (3) to perform parametric studies with various working fluids and power conversion unit (PCU) configurations, (4) the study of design options such as pressure, temperature, etc. (5) to develop a control strategy and (6) to perform transient analyses for plant upsets, control strategy, etc for hydrogen plant with PCU. This report describes the progress made in FY07 in each of the above areas. (1) The HyPEP code numeric scheme and Graphic User Interface have been tested and refined since the release of the alpha version a year ago. (2) The optimal size and design condition for the intermediate heat exchanger, one of the most important components for integration of the VHTR and HTSE plants, was estimated. (3) Efficiency calculations were performed for a variety of working fluids for this reference design. (4) Efficiency improvements over the reference VHTR/HTSE plant were investigated for an alternative design that directly couples a High Temperature Steam Rankin Cycle (HTRC) to the HTSE process. Integration of the VHTR with SI process plants was begun. (5) Plant control studies showed that inventory control in the VHTR plant and flow control in the HTSE plant is effective in maintaining hot-side temperatures near constant during load change. (6) Dynamic calculations showed that thermal transients arising in the chemical plant are strongly damped at the reactor resulting in a stable combined plant.« less
  • This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to tackling such issues in the future. This technical issues map is useful for understanding the relative importance of various technical challenges and willmore » be used as a planning tool for future work package planning.« less
  • This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway. The technical issues are ranked according to priority and by assumed resolution dates. Due to funding limitations, not all high-priority technical issues are under study at the present time, and more resources will need to be dedicated to tackling such issues in the future. This technical issues map is useful for understanding the relative importance of various technical challenges and willmore » be used as a planning tool by the NHI technical leadership for future work package planning. The technical map in its present form will be discontinued in FY08 and will be folded into a larger NHI System Interface and Support Systems project management plan and scope baseline statement in FY08.« less
  • A three-dimensional numerical model of ground-water flow was developed for the uppermost unconfined aquifer at the Hanford Site in south-central Washington. Development of the model is supported by the Hanford Site Ground-Water Surveillance Project, managed by the Pacific Northwest National Laboratory, which is responsible for monitoring the sitewide movement of contaminants in ground water beneath the Hanford Site. Two objectives of the Ground-Water Surveillance Project are to (1) identify and quantify existing, emerging, or potential ground-water quality problems, and (2) assess the potential for contaminants to migrate from the Hanford Site through the ground-water pathway. Numerical models of the ground-watermore » flow system are important tools for estimating future aquifer conditions and predicting the movement of contaminants through ground water. The Ground-Water Surveillance Project has supported development and maintenance of a two-dimensional model of the unconfined aquifer. This report describes upgrade of the two-dimensional model to a three-dimensional model. The numerical model is based on a three-dimensional conceptual model that will be continually refined and updated as additional information becomes available. This report presents a description of the three-dimensional conceptual model of ground-water flow in the unconfined aquifer system and then discusses the cur-rent state of the three-dimensional numerical model.« less