skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RERTR Fuel Developmemt and Qualification Plan

Abstract

In late 2003 it became evident that U-Mo aluminum fuels under development exhibited significant fuel performance problems under the irradiation conditions required for conversion of most high-powered research reactors. Solutions to the fuel performance issue have been proposed and show promise in early testing. Based on these results, a Reduced Enrichment Research and Test Reactor (RERTR) program strategy has been mapped to allow generic fuel qualification to occur prior to the end of FY10 and reactor conversion to occur prior to the end of FY14. This strategy utilizes a diversity of technologies, test conditions, and test types. Scoping studies using miniature fuel plates will be completed in the time frame of 2006-2008. Irradiation of larger specimens will occur in the Advanced Test Reactor (ATR) in the United States, the Belgian Reactor-2 (BR2) reactor in Belgium, and in the OSIRIS reactor in France in 2006-2009. These scoping irradiation tests provide a large amount of data on the performance of advanced fuel types under irradiation and allow the down selection of technology for larger scale testing during the final stages of fuel qualification. In conjunction with irradiation testing, fabrication processes must be developed and made available to commercial fabricators. The commercial fabricationmore » infrastructure must also be upgraded to ensure a reliable low enriched uranium (LEU) fuel supply. Final qualification of fuels will occur in two phases. Phase I will obtain generic approval for use of dispersion fuels with density less than 8.5 g-U/cm3. In order to obtain this approval, a larger scale demonstration of fuel performance and fabrication technology will be necessary. Several Materials Test Reactor (MTR) plate-type fuel assemblies will be irradiated in both the High Flux Reactor (HFR) and the ATR (other options include the BR2 and Russian Research Reactor, Dmitrovgrad, Russia [MIR] reactors) in 2008-2009. Following postirradiation examination, a report detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.« less

Authors:
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - NNSA
OSTI Identifier:
911912
Report Number(s):
INL/EXT-05-01017
TRN: US0800208
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
98 - NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; ALUMINIUM; ENRICHED URANIUM; FABRICATION; FUEL ASSEMBLIES; FUEL PARTICLES; FUEL PLATES; IRRADIATION; OSIRIS REACTOR; PERFORMANCE; REACTOR SAFETY; RESEARCH AND TEST REACTORS; RESEARCH REACTORS; SAFETY; SCHEDULES; TEST REACTORS; TESTING; RERTR Fuel Development Qualification

Citation Formats

Dan Wachs. RERTR Fuel Developmemt and Qualification Plan. United States: N. p., 2007. Web. doi:10.2172/911912.
Dan Wachs. RERTR Fuel Developmemt and Qualification Plan. United States. doi:10.2172/911912.
Dan Wachs. Mon . "RERTR Fuel Developmemt and Qualification Plan". United States. doi:10.2172/911912. https://www.osti.gov/servlets/purl/911912.
@article{osti_911912,
title = {RERTR Fuel Developmemt and Qualification Plan},
author = {Dan Wachs},
abstractNote = {In late 2003 it became evident that U-Mo aluminum fuels under development exhibited significant fuel performance problems under the irradiation conditions required for conversion of most high-powered research reactors. Solutions to the fuel performance issue have been proposed and show promise in early testing. Based on these results, a Reduced Enrichment Research and Test Reactor (RERTR) program strategy has been mapped to allow generic fuel qualification to occur prior to the end of FY10 and reactor conversion to occur prior to the end of FY14. This strategy utilizes a diversity of technologies, test conditions, and test types. Scoping studies using miniature fuel plates will be completed in the time frame of 2006-2008. Irradiation of larger specimens will occur in the Advanced Test Reactor (ATR) in the United States, the Belgian Reactor-2 (BR2) reactor in Belgium, and in the OSIRIS reactor in France in 2006-2009. These scoping irradiation tests provide a large amount of data on the performance of advanced fuel types under irradiation and allow the down selection of technology for larger scale testing during the final stages of fuel qualification. In conjunction with irradiation testing, fabrication processes must be developed and made available to commercial fabricators. The commercial fabrication infrastructure must also be upgraded to ensure a reliable low enriched uranium (LEU) fuel supply. Final qualification of fuels will occur in two phases. Phase I will obtain generic approval for use of dispersion fuels with density less than 8.5 g-U/cm3. In order to obtain this approval, a larger scale demonstration of fuel performance and fabrication technology will be necessary. Several Materials Test Reactor (MTR) plate-type fuel assemblies will be irradiated in both the High Flux Reactor (HFR) and the ATR (other options include the BR2 and Russian Research Reactor, Dmitrovgrad, Russia [MIR] reactors) in 2008-2009. Following postirradiation examination, a report detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.},
doi = {10.2172/911912},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • This plan was prepared to ensure that low-enriched uranium/thorium (LEU/Th) would be available as a backup to the highly enriched uranium/thorium (HEU/Th) fuel cycle currently being used in the Fort St. Vrain (FSV) high-temperature gas-cooled reactor (HTGR) in the event that the US nonproliferation policies require it. It describes the program that would be required to develop, qualify, and introduce an LEU/Th fuel cycle into the FSV HTGR on the earliest possible and most optimistic schedule. The results of the study indicate that licensing of the LEU/Th fuel cycle for FSV could be completed and fuel manufacturing could begin aboutmore » 4.5 years from inception of the program.« less
  • This report describes the development and qualification plan for the fuel for the Advanced Neutron Source. The reference fuel is U{sub 3}Si{sub 2}, dispersed in aluminum and clad in 6061 aluminum. This report was prepared in May 1994, at which time the reference design was for a two-element core containing highly enriched uranium (93% {sup 235}U) . The reactor was in the process of being redesigned to accommodate lowered uranium enrichment and became a three-element core containing a higher volume fraction of uranium enriched to 50% {sup 235}U. Consequently, this report was not issued at that time and would havemore » been revised to reflect the possibly different requirements of the lower-enrichment, higher-volume fraction fuel. Because the reactor is now being canceled, this unrevised report is being issued for archival purposes. The report describes the fabrication and inspection development plan, the irradiation tests and performance modeling to qualify performance, the transient testing that is part of the safety program, and the interactions and interfaces of the fuel development with other tasks.« less
  • Quality Assurance Plan (QPP) is to document the Idaho National Engineering and Environmental Laboratory (INEEL) Management and Operating (M&O) Contractor’s quality assurance program for AGR Fuel Development and Qualification activities, which is under the control of the INEEL. The QPP is an integral part of the Gen IV Program Execution Plan (PEP) and establishes the set of management controls for those systems, structures and components (SSCs) and related quality affecting activities, necessary to provide adequate confidence that items will perform satisfactorily in service.
  • This document contains an evaluation of the applicability of the current Quality Assurance Standards from the American Society of Mechanical Engineers Standard NQA-1 (NQA-1) criteria and identifies and describes the quality assurance process(es) by which attributes of historical, analytical, and other data associated with sodium-cooled fast reactor [SFR] metallic fuel and/or related reactor fuel designs and constituency will be evaluated. This process is being instituted to facilitate validation of data to the extent that such data may be used to support future licensing efforts associated with advanced reactor designs. The initial data to be evaluated under this program were generatedmore » during the US Integral Fast Reactor program between 1984-1994, where the data includes, but is not limited to, research and development data and associated documents, test plans and associated protocols, operations and test data, technical reports, and information associated with past United States Nuclear Regulatory Commission reviews of SFR designs.« less
  • This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examinationmore » facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.« less