skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study

Abstract

The Idaho National Laboratory (INL) along with the Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC) has designed and tested a nominal 10-MeV prototype Pulsed Photonuclear Assessment (PPA) inspection system to detect shielded nuclear material. This report highlights two specific areas that will provide further PPA technology enhancements, namely, an optimal gamma-ray detection system and the off axis radiation detection sensitivity. Detection of low-atomic number (Z) shielded nuclear material had been initially addressed by the inclusion of dedicated Geiger-Müller (GM) detectors co-located above each of the Photonuclear Neutron Detectors (PNDs). Several different radiation detectors were investigated to assess if this type of gamma-ray detector was optimal. The LND 719 GM detector was shown to have the best photon sensitivity and demonstrated an optimal ability to detect low-Z shielded nuclear material. Beyond the technical performance of this detector, its low cost and availability makes it a logical choice for a field-deployable system. In terms of off-axis detection sensitivity, simulation and benchmarking experiments have indicated that the PPA inspection system can successfully detect nuclear material (within 120 seconds) in various shielding configurations even when it is located at a distance of as much as 30 cm offmore » the interrogating beam axis (the exact sensitivity to off-axis interrogations will be largely dependent on the actual shielding material). As a general rule, high-Z shielding will allow detection at larger off-axis distances than low-Z materials.« less

Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
USDOE
OSTI Identifier:
911807
Report Number(s):
INL/EXT-06-11175
TRN: US0800148
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ACCELERATORS; AVAILABILITY; DETECTION; NEUTRON DETECTORS; PERFORMANCE; PHOTONS; RADIATION DETECTION; RADIATION DETECTORS; SENSITIVITY; SHIELDING; SIMULATION

Citation Formats

Not Available. Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study. United States: N. p., 2006. Web. doi:10.2172/911807.
Not Available. Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study. United States. doi:10.2172/911807.
Not Available. Sat . "Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study". United States. doi:10.2172/911807. https://www.osti.gov/servlets/purl/911807.
@article{osti_911807,
title = {Pulsed Photonuclear Assessment (PPA) Technology Enhancement Study},
author = {Not Available},
abstractNote = {The Idaho National Laboratory (INL) along with the Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC) has designed and tested a nominal 10-MeV prototype Pulsed Photonuclear Assessment (PPA) inspection system to detect shielded nuclear material. This report highlights two specific areas that will provide further PPA technology enhancements, namely, an optimal gamma-ray detection system and the off axis radiation detection sensitivity. Detection of low-atomic number (Z) shielded nuclear material had been initially addressed by the inclusion of dedicated Geiger-Müller (GM) detectors co-located above each of the Photonuclear Neutron Detectors (PNDs). Several different radiation detectors were investigated to assess if this type of gamma-ray detector was optimal. The LND 719 GM detector was shown to have the best photon sensitivity and demonstrated an optimal ability to detect low-Z shielded nuclear material. Beyond the technical performance of this detector, its low cost and availability makes it a logical choice for a field-deployable system. In terms of off-axis detection sensitivity, simulation and benchmarking experiments have indicated that the PPA inspection system can successfully detect nuclear material (within 120 seconds) in various shielding configurations even when it is located at a distance of as much as 30 cm off the interrogating beam axis (the exact sensitivity to off-axis interrogations will be largely dependent on the actual shielding material). As a general rule, high-Z shielding will allow detection at larger off-axis distances than low-Z materials.},
doi = {10.2172/911807},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}

Technical Report:

Save / Share:
  • Idaho National Laboratory, along with Idaho State University’s Idaho Accelerator Center and Los Alamos National Laboratory, is developing an electron accelerator-based, photonuclear inspection technology, called the Pulsed Photonuclear Assessment (PPA) system, for the detection of nuclear material concealed within air-, rail-, and, primarily, maritime-cargo transportation containers. This report summarizes the advances and progress of the system’s development in 2005. The contents of this report include an overview of the prototype inspection system, selected Receiver-Operator-Characteristic curves for system detection performance characterization, a description of the approach used to integrate the three major detection components of the PPA inspection system, highlights ofmore » the gray-scale density mapping technique being used for significant shield material detection, and higher electron beam energy detection results to support an evaluation for an optimal interrogating beam energy. This project is supported by the Department of Homeland Security Office of Research and Development and, more recently, the Domestic Nuclear Detection Office.« less
  • Idaho National Laboratory (INL), along with Los Alamos National Laboratory (LANL) and Idaho State University’s Idaho Accelerator Center (IAC), are developing an electron accelerator-based, photonuclear inspection technology for the detection of smuggled nuclear material within air-, rail-, and especially, maritime-cargo transportation containers. This CY04 report describes the latest developments and progress with the development of the Pulsed, Photonuclear Assessment (PPA) nuclear material inspection ystem, such as: (1) the identification of an optimal range of electron beam energies for interrogation applications, (2) the development of a new “cabinet safe” electron accelerator (i.e., Varitron II) to assess “cabinet safe-type” operations, (3) themore » numerical and experimental validation responses of nuclear materials placed within selected cargo configurations, 4) the fabrication and utilization of Calibration Pallets for inspection technology performance verification, 5) the initial technology integration of basic radiographic “imaging/mapping” with induced neutron and gamma-ray detection, 6) the characterization of electron beam-generated photon sources for optimal performance, 7) the development of experimentallydetermined Receiver-Operator-Characterization curves, and 8) several other system component assessments. This project is supported by the Department of Homeland Security and is a technology component of the Science & Technology Active Interrogation Portfolio entitled “Photofission-based Nuclear Material Detection and Characterization.”« less
  • Prototype Photonuclear Inspection Technology – An Integrated Systems Approach* James L. Jonesa, Daren R. Normana, Kevin J. Haskella, James W. Sterbentza, Woo Y. Yoona, Scott M. Watsona, James T. Johnsona, John M. Zabriskiea, Calvin E. Mossb, Frank Harmonc a – Idaho National Laboratory, P.O. Box 1625-2802, Idaho Falls, Idaho 83415-2802 b – Los Alamos National Laboratory, P.O. Box 1663, MS B228, Los Alamos, New Mexico, 87585 c – Idaho State University, 1500 Alvin Ricken Dr., Pocatello, Idaho 83201 Active interrogation technologies are being pursued in order to address many of today’s challenging inspection requirements related to both nuclear and non-nuclearmore » material detection. The Idaho National Laboratory, along with the Los Alamos National Laboratory and the Idaho State University’s Idaho Accelerator Center, continue to develop electron accelerator-based, photonuclear inspection technologies for the detection of shielded nuclear material within air-, rail-, and especially, maritime-cargo containers. This paper presents an overview and status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system and its ability to detect shielded nuclear material by focusing on the integration of three major detection system components: delayed neutron measurement, delayed gamma-ray measurements, and a transmission, gray-scale mapping for shield material detection. Areas of future development and advancement within each detection component will be presented. *Supported in part by the Department of Homeland Security under DOE-ID Contract Number DE-AC07-99ID13727. POC: James L. Jones, 208-526-1730« less
  • Spatial flux transients were introduced into a number of lattices by slabs of cadmium or hydrogenous materials. Detailed activation measurements of these transients are reported. In most cases the transients followed a single exponential with a relaxation length that was dependent upon the nature of the penturbing slab and was, in general, different from the value obtained from SOFOCATE averaging. (auth)
  • The relaxation lengths and peaking of spatial transients arising from hydrogenous gaps are calculated on the basis of a simplified position-dependent spectrum model. These calculations compare favorably with experiment in contrast to position-independent models, namely, WOXX-WANDA and MUFTSOFOCATE-WANDA. The discrepancies are shown to increase with BETA gamma . (auth)