skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University

Abstract

The Idaho National Engineering and Environmental Laboratory (INEEL) and Washington State University (WSU) have constructed a new epithermal-neutron beam for collaborative Boron Neutron Capture Therapy (BNCT) preclinical research at the WSU TRIGATM research reactor facility1. More recently, additional beamline components were developed to permit the optional thermalization of the beam for certain types of studies where it is advantageous to use a thermal neutron source rather than an epithermal source. This article summarizes the results of some initial neutronic performance measurements for the thermalized system, with a comparison to the expected performance from the design computations.

Authors:
; ; ;
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - SC
OSTI Identifier:
911624
Report Number(s):
INL/CON-05-00440
TRN: US0800047
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Conference
Resource Relation:
Conference: ANS WInter Meeting,Washington DC,11/13/2005,11/17/2005
Country of Publication:
United States
Language:
English
Subject:
61 - RADIATION PROTECTION AND DOSIMETRY; BORON; DESIGN; INEEL; NEUTRON BEAMS; NEUTRON CAPTURE THERAPY; PERFORMANCE; RESEARCH REACTORS; THERMAL NEUTRONS; THERMALIZATION; BNCT, Neutrons, TRIGA, WSU

Citation Formats

David W. Nigg, P.E> Sloan, J.R. Venhuizen, and C.A. Wemple. Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University. United States: N. p., 2005. Web.
David W. Nigg, P.E> Sloan, J.R. Venhuizen, & C.A. Wemple. Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University. United States.
David W. Nigg, P.E> Sloan, J.R. Venhuizen, and C.A. Wemple. Tue . "Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University". United States. doi:. https://www.osti.gov/servlets/purl/911624.
@article{osti_911624,
title = {Initial Performance Characterization for a Thermalized Neutron Beam for Neutron Capture Therapy Research at Washington State University},
author = {David W. Nigg and P.E> Sloan and J.R. Venhuizen and C.A. Wemple},
abstractNote = {The Idaho National Engineering and Environmental Laboratory (INEEL) and Washington State University (WSU) have constructed a new epithermal-neutron beam for collaborative Boron Neutron Capture Therapy (BNCT) preclinical research at the WSU TRIGATM research reactor facility1. More recently, additional beamline components were developed to permit the optional thermalization of the beam for certain types of studies where it is advantageous to use a thermal neutron source rather than an epithermal source. This article summarizes the results of some initial neutronic performance measurements for the thermalized system, with a comparison to the expected performance from the design computations.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 01 00:00:00 EST 2005},
month = {Tue Nov 01 00:00:00 EST 2005}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This paper summarizes the results of the final beam characterization measurements for a dual mode epithermal-thermal beam facility for neutron capture therapy research that was recently constructed at the Washington State Univ. TRIGA{sup TM} research reactor. The results show that the performance of the beam facility is consistent with the design computations and with international standards for the intended application. A useful epithermal neutron flux of 1.3 x 10{sup 9} n/cm{sup 2}-s is produced at the irradiation point with the beam in epithermal mode and shaped by a 10-cm circular aperture plate. When the beam is thermalized with approximately 34more » cm of heavy water, the useful thermal flux at the irradiation point is approximately 3.5 x 10{sup 8} n/cm{sup 2}-s. The new WSU facility is one of only two such installations currently operating in the US. (authors)« less
  • The University of Missouri (MU) Institute for Nano and Molecular Medicine, the Idaho National Laboratory (INL) and the University of Missouri Research Reactor (MURR) have undertaken a new collaborative research initiative to further the development of improved boron delivery agents for BNCT. The first step of this effort has involved the design and construction of a new thermal neutron beam irradiation facility for cell and small-animal radiobological research at the MURR. In this paper we present the beamline design with the results of pertinent neutronic design calculations. Results of neutronic performance measurements, initiated in February 2008, will also be availablemore » for inclusion in the final paper. The new beam will be located in an existing 152.4 mm (6’) diameter MURR beam tube extending from the core to the right in Figure 1. The neutron beam that emanates from the berylium reflector around the reactor is filtered with single-crystal silicon and single-crystal bismuth segments to remove high energy, fission spectrum neutrons and reactor gamma ray contamination. The irradiation chamber is downstream of the bismuth filter section, and approximately 3.95 m from the central axis of the reactor. There is sufficient neutron flux available from the MURR at its rated power of 10 MW to avoid the need for cryogenic cooling of the crystals. The MURR operates on average 150 hours per week, 52 weeks a year. In order to take advantage of 7800 hours of operation time per year the small animal BNCT facility will incorparate a shutter constucuted of boral, lead, steel and polyethylene that will allow experimenters to access the irradiation chamber a few minutes after irradiation. Independent deterministic and stochastic models of the coupled reactor core and beamline were developed using the DORT two-dimensional radiation transport code and the MCNP-5 Monte Carlo code, respectively. The BUGLE-80 47-neutron, 20-gamma group cross section library was employed for the DORT computations, in keeping with previous practice for analysis of a number of other NCT neutron facilities worldwide. The standard ENDF/B Version 6.8 cross section libraries were used with MCNP, except that special calculated cross section sets for the single-crystal bismuth and silicon filters in the MCNP calculations were provided to MU and INL specifically for this study by the Korean Atomic Energy Research Institute and, independently, by North Carolina State University. Cross sections for the amorphous bismuth and silicon files on the BUGLE-80 library used with DORT were modified to account for the single-crystal form of these materials using correction factors computed using MCNP. A number of parameter studies were conducted, independently varying the thicknesses of the silicon and bismuth filter sections to find an optimum that maximizes the thermal neutron flux while maintaining the fast-neutron and gamma components of the beam within acceptable ranges. Both the DORT and MCNP beamline optimization computations led to the conclusion that the silicon filtering section should be approximately 55 cm in thickness and the bismuth section should be 8 cm in thickness. The total estimated thermal neutron flux delivered to the irradiation location by the filtered beam, integrated to 0.414 eV, is approximately 9.0 x 108 neutrons/cm2-s. The calculations also yielded an epithermal and fast-neutron kerma of approximately 1.0 x 10-11 cGy-cm2.« less
  • Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential formore » detailed dosimetric studies required for the anticipated research program.« less
  • Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometrymore » measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)« less