skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Verification and Validation of TMAP7

Abstract

The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistent with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.

Authors:
;
Publication Date:
Research Org.:
Idaho National Laboratory (INL)
Sponsoring Org.:
DOE - SC
OSTI Identifier:
910946
Report Number(s):
INEEL/EXT-04-01657
TRN: US0704303
DOE Contract Number:
DE-AC07-99ID-13727
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
08 - HYDROGEN, 11 - NUCLEAR FUEL CYCLE AND FUEL MATERIALS , 22 - GENERAL STUDIES OF NUCLEAR REACTORS, 70 - PLASMA PHYSICS AND FUSION TECHNOLOGY, 99 - GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; ANALYTICAL SOLUTION; DECAY; DOCUMENTATION; EXPERIMENTAL REACTORS; TRITIUM; VALIDATION; VERIFICATION; Fusion; Model; Transport; Tritium

Citation Formats

James Ambrosek, and James Ambrosek. Verification and Validation of TMAP7. United States: N. p., 2005. Web. doi:10.2172/910946.
James Ambrosek, & James Ambrosek. Verification and Validation of TMAP7. United States. doi:10.2172/910946.
James Ambrosek, and James Ambrosek. Thu . "Verification and Validation of TMAP7". United States. doi:10.2172/910946. https://www.osti.gov/servlets/purl/910946.
@article{osti_910946,
title = {Verification and Validation of TMAP7},
author = {James Ambrosek and James Ambrosek},
abstractNote = {The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistent with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.},
doi = {10.2172/910946},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Dec 01 00:00:00 EST 2005},
month = {Thu Dec 01 00:00:00 EST 2005}
}

Technical Report:

Save / Share:
  • The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistentmore » with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.« less
  • The Tritium Migration Analysis Program, Version 7 (TMAP7) code is an update of TMAP4, an earlier version that was verified and validated in support of the International Thermonuclear Experimental Reactor (ITER) program and of the intermediate version TMAP2000. It has undergone several revisions. The current one includes radioactive decay, multiple trap capability, more realistic treatment of heteronuclear molecular formation at surfaces, processes that involve surface-only species, and a number of other improvements. Prior to code utilization, it needed to be verified and validated to ensure that the code is performing as it was intended and that its predictions are consistentmore » with physical reality. To that end, the demonstration and comparison problems cited here show that the code results agree with analytical solutions for select problems where analytical solutions are straightforward or with results from other verified and validated codes, and that actual experimental results can be accurately replicated using reasonable models with this code. These results and their documentation in this report are necessary steps in the qualification of TMAP7 for its intended service.« less
  • The TMAP Code was written at the Idaho National Engineering and Environmental Laboratory in the late 1980s as a tool for safety analysis of systems involving tritium. Since then it has been upgraded several times and has been used in numerous applications including experiments supporting fusion safety, predictions for advanced systems such as the International Thermonuclear Experimental Reactor (ITER), and estimates involving tritium production technologies. Its most recent upgrade to TMAP7 was accomplished in response to several needs. Prior versions had the capacity to deal with only a single trap for diffusing gaseous species in solid structures. TMAP7 includes upmore » to three separate traps and up to 10 diffusing species. The original code had difficulty dealing with heteronuclear molecule formation such as HD and DT. That has been removed. Under pre-specified boundary enclosure conditions and solution-law dependent diffusion boundary conditions, such as Sieverts' law, TMAP7 automatically generates heteronuclear molecular partial pressures when solubilities and partial pressures of the homonuclear molecular species are provided for law-dependent diffusion boundary conditions. A further sophistication is the addition of non-diffusing surface species. Atoms such as oxygen or nitrogen or formation of hydroxyl radicals on metal surfaces are sometimes important in molecule formation with diffusing hydrogen isotopes but do not, themselves, diffuse appreciably in the material. TMAP7 will accommodate up to 30 such surface species, allowing the user to specify relationships between those surface concentrations and partial pressures of gaseous species above the surfaces or to form them dynamically by combining diffusion species or other surface species. Additionally, TMAP7 allows the user to include a surface binding energy and an adsorption barrier energy and includes asymmetrical diffusion between the surface sites and regular diffusion sites in the bulk. All of the previously existing features for heat transfer, flows between enclosures, and chemical reactions within the enclosures have been retained, but the allowed problem size and complexity have been increased to take advantage of the greater memory and speed available on modern computers. One additional feature unique to TMAP7 is radioactive decay for both trapped and mobile species. Recently, TMAP7 has undergone verification and validation processes to ensure its performance in a wide variety of problems. This paper describes the use and new capabilities of TMAP7 and presents results of verification and validation testing.« less
  • The TMAP code has been upgraded to version 7, which includes radioactive decay along with many features implemented in prior versions. Pursuant to acceptance and release for distribution, the code was exercised in a variety of problem types to demonstrate that it provides results in agreement with theoretical results for cases where those are available. It has also been used to model certain experimental results. In this paper, the capabilities of the TMAP7 code are demonstrated by presenting some of the results from the verification and validation process.
  • By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of conventional software. The 153 methods so identified were classified according to their appropriateness for various phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors, four concerning ease-of-use of the methods and four concerning the methods` power to detect defects. Based on these factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit metricmore » and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each method, depending on three classes of needed stringency of V&V (determined by ratings of a system`s complexity and required-integrity). Methods were then rank-ordered for each of the three classes by terms of their overall cost-benefits and effectiveness. The applicability was then assessed of each for the identified components of knowledge-based and expert systems, as well as the system as a whole.« less