skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma

Abstract

Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median ofmore » 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.« less

Authors:
; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
909996
Report Number(s):
PNNL-SA-51288
Journal ID: ISSN 0732-183X; JCONDN; 600306000; TRN: US0704064
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Clinical Oncology, 25(11):1396-1402; Journal Volume: 25; Journal Issue: 11
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ADULTS; DISEASE INCIDENCE; DOSIMETRY; LYMPHOMAS; MORTALITY; NEOPLASMS; NEUTROPHILS; ORGANS; PATIENTS; RADIATION DOSES; RADIOIMMUNOTHERAPY; STEM CELLS; THERAPY; TOXICITY; TRANSPLANTS

Citation Formats

Gopal, Ajay K., Rajendran, Joseph G., Gooley, Ted, Pagel, John M., Fisher, Darrell R., Petersdorf, Stephen, Maloney, David G., Eary, Janet F., Appelbaum, Frederick R., and Press, Oliver W. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma. United States: N. p., 2007. Web. doi:10.1200/JCO.2006.09.1215.
Gopal, Ajay K., Rajendran, Joseph G., Gooley, Ted, Pagel, John M., Fisher, Darrell R., Petersdorf, Stephen, Maloney, David G., Eary, Janet F., Appelbaum, Frederick R., & Press, Oliver W. High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma. United States. doi:10.1200/JCO.2006.09.1215.
Gopal, Ajay K., Rajendran, Joseph G., Gooley, Ted, Pagel, John M., Fisher, Darrell R., Petersdorf, Stephen, Maloney, David G., Eary, Janet F., Appelbaum, Frederick R., and Press, Oliver W. Tue . "High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma". United States. doi:10.1200/JCO.2006.09.1215.
@article{osti_909996,
title = {High-Dose [131I]Tositumomab (anti-CD20) Radioimmunotherapy and Autologous Hematopoietic Stem Cell Transplantation for Adults ≥ 60 Years Old with Relapsed or Refractory B-Cell Lymphoma},
author = {Gopal, Ajay K. and Rajendran, Joseph G. and Gooley, Ted and Pagel, John M. and Fisher, Darrell R. and Petersdorf, Stephen and Maloney, David G. and Eary, Janet F. and Appelbaum, Frederick R. and Press, Oliver W.},
abstractNote = {Purpose: The majority of patients with relapsed or refractory B-cell, non-Hodgkin’s lymphoma (NHL) are over 60 years of age, yet they are often denied potentially curative high-dose therapy and autologous stem cell transplants (ASCT) due to the risk of excessive treatment-related morbidity and mortality. Myeloablative anti-CD20 radioimmunotherapy (RIT) can deliver curative radiation doses to tumor sites while limiting exposure to normal organs and may be particularly suited for older adults requiring high-dose therapy. Methods: Patients over age 60 with relapsed B-NHL received infusions of tositumomab anti-CD20 antibody labeled with 5-10mCi I-131 tracer for dosimetry purposes followed 10 days later by individualized therapeutic infusions of I-131-tositumomab (median 525 mCi, range 328-1154 mCi) to deliver 25-27Gy to the critical normal organ receiving the highest radiation dose. ASCT was performed approximately 2 weeks after therapy. Results: Twenty-four patients with a median age of 64 (range 60-76) who had received a median of four prior regimens (range 2-14) were treated. Thirteen (54%) had chemotherapy-resistant disease. The estimated 3-year overall and progression-free survivals were 59% and 51%, respectively with a median follow-up of 2.9 years (range 1-6 years). All patients experienced expected myeloablation with engraftment of platelets (≥20K/µL) and neutrophils (≥500/µL) occurring a median of 9 and 15 days, respectively following ASCT. There were no treatment-related deaths, and only two patients experienced grade 4 non-hematologic toxicity. Conclusions: Myeloablative RIT and ASCT is a safe and effective therapeutic option for older adults with relapsed B-NHL.},
doi = {10.1200/JCO.2006.09.1215},
journal = {Journal of Clinical Oncology, 25(11):1396-1402},
number = 11,
volume = 25,
place = {United States},
year = {Tue Apr 10 00:00:00 EDT 2007},
month = {Tue Apr 10 00:00:00 EDT 2007}
}
  • Relapsed B-cell lymphomas are incurable with conventional chemotherapy and radiation therapy, although a fraction of patients can be cured with high-dose chemoradiotherapy and autologous stem-cell transplantation (ASCT). We conducted a phase I/II trial to estimate the maximum tolerated dose (MTD) of iodine 131 (I-131)-tositumomab (anti-CD20 antibody) that could be combined with etoposide and cyclophosphamide followed by ASCT in patients with relapsed B-cell lymphomas. Fifty-two patients received a trace-labeled infusion of 1.7 mg/kg I-131-tositumomab (185-370 MBq) followed by serial quantitative gamma-camera imaging and estimation of absorbed doses of radiation to tumor sites and normal organs. Ten days later, patients received amore » therapeutic infusion of 1.7 mg/kg tositumomab labeled with an amount of I-131 calculated to deliver the target dose of radiation (20-27 Gy) to critical normal organs (liver, kidneys, and lungs). Patients were maintained in radiation isolation until their total -body radioactivity was less than 0.07 mSv/h at 1 m. They were then given etoposide and cyclophosphamide followed by ASCT. The MTD of I-131-tositumomab that could be safely combined with 60 mg/kg etoposide and 100 mg/kg cyclophosphamide delivered 25 Gy to critical normal organs. The estimated overall survival (OS) and progression-free survival (PFS) of all treated patients at 2 years was 83% and 68%, respectively. These findings compare favorably with those in a nonrandomized control group of patients who underwent transplantation, external-beam total-body irradiation, and etoposide and cyclophosphamide therapy during the same period (OS of 53% and PFS of 36% at 2 years), even after adjustment for confounding variables in a multivariable analysis.« less
  • Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by themore » MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation doses by adjusting for the actual organ mass and shows the value of this approach in treatment planning for RIT.« less
  • Radioimmunotherapy (RIT) is a promising treatment approach for B-cell lymphomas. This is our first opportunity to report long-term follow-up data and late toxicities in 29 patients treated with myeloablative doses of iodine-131-anti-CD20 antibody (anti-B1) and autologous stem-cell rescue. PATIENTS AND METHODS: Trace-labeled biodistribution studies first determined the ability to deliver higher absorbed radiation doses to tumor sites than to lung, liver, or kidney at varying amounts of anti-B1 protein (0.35, 1.7, or 7 mg/kg). Twenty- nine patients received therapeutic infusions of single-agent (131)I- anti-B1, given at the protein dose found optimal in the biodistribution study, labeled with amounts of (131)Imore » (280 to 785 mCi[10.4 to 29.0 GBq]) calculated to deliver specific absorbed radiation doses to the normal organs, followed by autologous stem-cell support. RESULTS: Major responses occurred in 25 patients (86%), with 23 complete responses (CRs; 79%). The nonhematopoietic do se-limiting toxicity was reversible cardiopulmonary insufficiency, which occurred in two patients at RIT doses that delivered > or = 27 Gy to the lungs. With a median follow-up time of 42 months, the estimated overall and progression-free survival rates are 68% and 42%, respectively. Currently, 14 of 29 patients remain in unmaintained remissions that range from 27+ to 87+ months after RIT. Late toxicities have been uncommon except for elevated thyroid-stimulating hormone (TSH) levels found in approximately 60% of the subjects. Two patients developed second malignancies, but none have developed myelodysplasia (MDS). CONCLUSION: Myeloablative (131)I-anti- B1 RIT is relatively well tolerated when given with autologous stem- cell support and often results in prolonged remission durations with few late toxicities.« less
  • Patients with relapsed or refractory mantle cell lymphoma (MCL) demonstrate poor survival after standard treatment. Myeloablative radioimmunotherapy (RIT) using 131I tositumomab (anti-CD20) has the ability to deliver specific radiation absorbed dose to antigen bearing tumor. We reviewed normal organ radiation absorbed doses in MCL patients. METHODS: Records of patients with MCL (n = 25), who received myeloablative RIT between January 1996 and December 2003 were reviewed. Individual patient radiation dosimetry was performed on all patients after a trace labeled infusion of 131I tositumomab (mean = 348 MBq), to calculate the required amount of radioactivity for therapy, based on MIRD schema.more » RESULTS: Mean organ residence times (hr) corrected for CT derived organ volumes for MCL, were as follows: Lungs:9.0; Liver:12.4; Kidneys:1.7; Spleen:2.17; Whole Body:62.4 and mean radiation absorbed doses mGy/Mbq were: Lungs:1.2; Liver:1.1; Kidneys:0.85; Spleen:1.7; Whole Body: 0.21. This is similar to patients with other NHL. Patients received a mean activity of 21 GBq of 131I (range = 11.5 - 41.4) for therapy estimated to deliver 25 Gy to the normal organ receiving the highest radiation absorbed dose. CONCLUSION: Myeloablative RIT using 131I tositumomab results in normal organ radiation absorbed doses similar to those in patients with other non-Hodgkin's lymphoma, and is suitable for treating patients with relapsed or refractory MCL.« less
  • Purpose: To evaluate the value of adding involved field radiotherapy (IFRT) to patients with relapsed/refractory Hodgkin lymphoma (HL) undergoing high-dose chemotherapy (HDCT) and stem cell transplantation (SCT). Methods and Materials: Ninety-two patients with relapsed/refractory HL undergoing HDCT and SCT from 1995 to 2008 were analyzed in a case-control design. Forty-six HL patients treated with IFRT within 2 months of SCT were matched to 46 HL patients who did not receive IFRT based on age, stage at relapse, timing of relapse, histology, and year of SCT. All were evaluated for response, survival, and toxicity with a median followup of 63.5 months.more » Results: There was a trend for better disease control in patients receiving IFRT. Specifically, 10/46 IFRT patients (22%) relapsed/progressed after SCT compared with 17/46 control patients (37%). Of the failures after IFRT, 70% were inside the radiation field, all in sites of bulky disease. In patients with nonbulky disease, IFRT also resulted in significantly improved outcomes (failure rate 6% vs. 33%, respectively). When stratified by disease bulk, the use of IFRT was found to significantly improve DFS (p = 0.032), but did not affect OS. In addition, IFRT and nonbulky disease were found to be positive prognostic indicators for DFS with hazard ratios of 0.357 (p = 0.032) and 0.383 (p = 0.034), respectively. Grade IV/V toxicities were significantly higher in the IFRT vs. non-IFRT group (28% vs. 2%; p < 0.001), observed only in patients receiving a busulfan-based conditioning regimen. Conclusion: Patients with refractory or relapsed HL undergoing HDCT and SCT have a high risk of relapse in sites of prior disease involvement, especially in sites of bulky disease. The use of IFRT is associated with a lower risk of disease progression in these sites; however bulky disease sites are still difficult to control. Toxicity risk is significant, particularly when busulfan-based conditioning is combined with IFRT, and alternative chemotherapy conditioning regimens should be considered.« less