skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry

Abstract

One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure andmore » simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental catalytic processes that control FT synthesis, thus enabling us to accomplish the first 4 of these objectives. In addition, we were able to begin to suggest the design features of these materials, the final task of the proposed effort. The following report details the specific findings and proposes recommendations. The support from DOE NETL was used to fund a portion of a postdoctoral and a graduate student's salaries. The postdoctoral fellow (Dr. Qingfeng Ge) who was working on this project was hired as an Assistant Professor in chemistry at the Southern Illinois University.« less

Authors:
Publication Date:
Research Org.:
University Of Virginia
Sponsoring Org.:
USDOE
OSTI Identifier:
909834
DOE Contract Number:  
FG26-01NT41275
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 29 ENERGY PLANNING, POLICY AND ECONOMY; CHEMISTRY; ENERGY SOURCES; FISCHER-TROPSCH SYNTHESIS; MOLECULAR WEIGHT; NUCLEAR ENERGY; REACTION KINETICS; SYNTHESIS; TRANSITION ELEMENTS

Citation Formats

Neurock, Matthew. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. United States: N. p., 2006. Web. doi:10.2172/909834.
Neurock, Matthew. An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry. United States. doi:10.2172/909834.
Neurock, Matthew. Mon . "An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry". United States. doi:10.2172/909834. https://www.osti.gov/servlets/purl/909834.
@article{osti_909834,
title = {An Ab Initio Approach Towards Engineering Fischer-Tropsch Surface Chemistry},
author = {Neurock, Matthew},
abstractNote = {One of the greatest societal challenges over the next decade is the production of cheap, renewable energy for the 10 billion people that inhabit the earth. This will require the development of various energy sources which will likely include fuels derived from methane, coal, and biomass and alternatives sources such as solar, wind and nuclear energy. One approach will be to synthesize gasoline and other fuels from simpler hydrocarbons such as CO derived from methane or other U.S. based sources such as coal. Syngas (CO and H{sub 2}) can be readily converted into higher molecular weight hydrocarbons through Fischer-Tropsch synthesis. Fischer-Tropsch (FT) synthesis involves the adsorption and the activation of CO and H{sub 2}, the subsequent propagation steps including hydrogenation and carbon-carbon coupling, followed by chain termination reactions. The current commercial catalysts are supported Co and Co-alloys particles. This project set out with the following objectives in mind: (1) understand the reaction mechanisms that control FT kinetics, (2) predict how the intrinsic metal-adsorbate bond affects the sequence of elementary steps in FT, (3) establish the effects of the reaction environment on catalytic activity and selectivity, (4) construct a first-principles based algorithm that can incorporate the detailed atomic surface structure and simulate the kinetics for the myriad of elementary pathways that make up FT chemistry, and (5) suggest a set of optimal features such as alloy composition and spatial configuration, oxide support, distribution of defect sites. As part of this effort we devoted a significant portion of time to develop an ab initio based kinetic Monte Carlo simulation which can be used to follow FT surface chemistry over different transition metal and alloy surfaces defined by the user. Over the life of this program, we have used theory and have developed and applied stochastic Monte Carlo simulations in order to establish the fundamental catalytic processes that control FT synthesis, thus enabling us to accomplish the first 4 of these objectives. In addition, we were able to begin to suggest the design features of these materials, the final task of the proposed effort. The following report details the specific findings and proposes recommendations. The support from DOE NETL was used to fund a portion of a postdoctoral and a graduate student's salaries. The postdoctoral fellow (Dr. Qingfeng Ge) who was working on this project was hired as an Assistant Professor in chemistry at the Southern Illinois University.},
doi = {10.2172/909834},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2006},
month = {9}
}