skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rotational motion based, electrostatic power source and methods thereof

Abstract

A power system includes a member with two or more sections and at least one pair of electrodes. Each of the two or more sections has a stored static charge. Each of the pair of electrodes is spaced from and on substantially opposing sides of the member from the other electrode and is at least partially in alignment with the other electode. At least one of the member and the at least one pair of electrodes is moveable with respect to the other. When at least one of the sections is at least partially between the pair of electrodes, the at least one of the sections has the stored static electric charge closer to one of the pair of electrodes. When at least one of the other sections is at least partially between the pair of electrodes, the other section has the stored static electric charge closer to the other one of the pair of electrodes.

Inventors:
 [1]
  1. Churchville, NY
Publication Date:
Research Org.:
Nth Tech Corporation (Churchville, NY)
Sponsoring Org.:
USDOE
OSTI Identifier:
909157
Patent Number(s):
7,211,923
Application Number:
10/705,656
Assignee:
Nth Tech Corporation (Churchville, NY) CHO
DOE Contract Number:
FG02-02ER63410
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Potter, Michael D. Rotational motion based, electrostatic power source and methods thereof. United States: N. p., 2007. Web.
Potter, Michael D. Rotational motion based, electrostatic power source and methods thereof. United States.
Potter, Michael D. Tue . "Rotational motion based, electrostatic power source and methods thereof". United States. doi:. https://www.osti.gov/servlets/purl/909157.
@article{osti_909157,
title = {Rotational motion based, electrostatic power source and methods thereof},
author = {Potter, Michael D},
abstractNote = {A power system includes a member with two or more sections and at least one pair of electrodes. Each of the two or more sections has a stored static charge. Each of the pair of electrodes is spaced from and on substantially opposing sides of the member from the other electrode and is at least partially in alignment with the other electode. At least one of the member and the at least one pair of electrodes is moveable with respect to the other. When at least one of the sections is at least partially between the pair of electrodes, the at least one of the sections has the stored static electric charge closer to one of the pair of electrodes. When at least one of the other sections is at least partially between the pair of electrodes, the other section has the stored static electric charge closer to the other one of the pair of electrodes.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}

Patent:

Save / Share:
  • An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure accordingmore » to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.« less
  • A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming themore » fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.« less
  • According to one embodiment, a method for simulating portions of an emergency response exercise includes generating situational awareness outputs associated with a simulated emergency and sending the situational awareness outputs to a plurality of output devices. Also, the method includes outputting to a user device a plurality of decisions associated with the situational awareness outputs at a decision point, receiving a selection of one of the decisions from the user device, generating new situational awareness outputs based on the selected decision, and repeating the sending, outputting and receiving steps based on the new situational awareness outputs. Other methods, systems, andmore » computer program products are included according to other embodiments of the invention.« less
  • Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.
  • A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.