skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanovehicles based Bioassay Labels

Abstract

In this article, we review recent advances of our group in nanoparticle labels based bioassay. Apoferritin and silica nanoparticles have been used as nanovehicles to load large amount of markers for highly sensitive bioassay. Markers loaded apoferritin, apoferritin-templated metallic phosphate nanoparticles, and poly [guanine] coated silica nanoparticles have been prepared, characterized and used as labels for highly sensitive bioassay of protein and DNA. Dissociation and reconstitution characteristics at different pH as well as the special cavity structure of apoferritin nanovehicle provides a simple and convenient route to prepare versatile nanoparticle labels and avoid the complicated and tedious synthesis process of conventional nanoparticle labels. The optical and electrochemical characteristics of the prepared nanoparticle labels are easily controlled by loading different optical or electrochemical markers. Additionally, the use of apoferritin nanovehicle as template for synthesis of metallic phosphate nanoparticle labels offers fast route to prepare uniform-size metallic nanoparticle labels for electrochemical bioassay and avoids the traditional harsh dissolution conditions to dissolve metallic nanoparticle tags (that is, the strong-acid dissolution of quantum dots and gold nanoparticles) during the stripping analysis step. Silica nanoparticle has also been used as nanovehicle to carry thousands of poly [guanine] tracers, which was used to enhance the oxidationmore » current of Ru(bpy)32+, resulting in enhanced sensitivity of electrochemical immunoassay. The new nanovehicle-based labels have been used for highly sensitive electrochemical detection of DNA and protein biomarkers, such as tumor necrosis factor-alpha (TNF-a). The high sensitivity and selectivity make these labels a useful addition to the armory of nanoparticle-based bioassay. The new nanovehicles based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
908725
Report Number(s):
PNNL-SA-53315
17505; 12490; 6899; 400412000; TRN: US200722%%885
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Electroanalysis, 19(7-8):777-785; Journal Volume: 19; Journal Issue: 7-8
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; BIOASSAY; DISSOCIATION; DISSOLUTION; DNA; GOLD; GUANINE; IMMUNOASSAY; NECROSIS; OXIDATION; PHOSPHATES; PROTEINS; QUANTUM DOTS; SENSITIVITY; SILICA; SYNTHESIS; Nanoparticles, Nanovehicles, Immunoassays; Environmental Molecular Sciences Laboratory

Citation Formats

Liu, Guodong, Wang, Jun, Wu, Hong, Lin, Ying-Ying, and Lin, Yuehe. Nanovehicles based Bioassay Labels. United States: N. p., 2007. Web. doi:10.1002/elan.200603787.
Liu, Guodong, Wang, Jun, Wu, Hong, Lin, Ying-Ying, & Lin, Yuehe. Nanovehicles based Bioassay Labels. United States. doi:10.1002/elan.200603787.
Liu, Guodong, Wang, Jun, Wu, Hong, Lin, Ying-Ying, and Lin, Yuehe. Sun . "Nanovehicles based Bioassay Labels". United States. doi:10.1002/elan.200603787.
@article{osti_908725,
title = {Nanovehicles based Bioassay Labels},
author = {Liu, Guodong and Wang, Jun and Wu, Hong and Lin, Ying-Ying and Lin, Yuehe},
abstractNote = {In this article, we review recent advances of our group in nanoparticle labels based bioassay. Apoferritin and silica nanoparticles have been used as nanovehicles to load large amount of markers for highly sensitive bioassay. Markers loaded apoferritin, apoferritin-templated metallic phosphate nanoparticles, and poly [guanine] coated silica nanoparticles have been prepared, characterized and used as labels for highly sensitive bioassay of protein and DNA. Dissociation and reconstitution characteristics at different pH as well as the special cavity structure of apoferritin nanovehicle provides a simple and convenient route to prepare versatile nanoparticle labels and avoid the complicated and tedious synthesis process of conventional nanoparticle labels. The optical and electrochemical characteristics of the prepared nanoparticle labels are easily controlled by loading different optical or electrochemical markers. Additionally, the use of apoferritin nanovehicle as template for synthesis of metallic phosphate nanoparticle labels offers fast route to prepare uniform-size metallic nanoparticle labels for electrochemical bioassay and avoids the traditional harsh dissolution conditions to dissolve metallic nanoparticle tags (that is, the strong-acid dissolution of quantum dots and gold nanoparticles) during the stripping analysis step. Silica nanoparticle has also been used as nanovehicle to carry thousands of poly [guanine] tracers, which was used to enhance the oxidation current of Ru(bpy)32+, resulting in enhanced sensitivity of electrochemical immunoassay. The new nanovehicle-based labels have been used for highly sensitive electrochemical detection of DNA and protein biomarkers, such as tumor necrosis factor-alpha (TNF-a). The high sensitivity and selectivity make these labels a useful addition to the armory of nanoparticle-based bioassay. The new nanovehicles based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.},
doi = {10.1002/elan.200603787},
journal = {Electroanalysis, 19(7-8):777-785},
number = 7-8,
volume = 19,
place = {United States},
year = {Sun Apr 01 00:00:00 EDT 2007},
month = {Sun Apr 01 00:00:00 EDT 2007}
}
  • Here we report a nanoparticle label based on apoferritin nanovehicle loaded internally with markers for sensitive electrochemical DNA detection. The central cavity structure, the dissociation and reconstitute properties at different pHs of apoferritin provide a facile method to load and release markers. Hexacynoferrate(III) was used as model marker to load into the cavity of apoferritin protein cage. The loaded nanoparticle surface was functionalized with amino-modified DNA probe. Electrochemical DNA hybridization assay based on the hexacynoferrate loaded apoferritin nanovehicle could detect 23 atmol DNA targets in 50 ul sample solution. The concept could be readily extended to load other redox andmore » fluorescence markers for bioassay applications. The new nanoparticle labels hold great promise for multi-target detection (in connection to nanoparticles loaded with different markers) and for enhancing the sensitivity of other bioassays.« less
  • We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less
  • A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced anmore » amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.« less
  • A novel electrochemical biosensing device that integrates an immunochromatographic test strip and a screen-printed electrode (SPE) connected to a portable electrochemical analyzer was presented for rapid, sensitive, and quantitative detection of disease-related biomarker in human blood samples. The principle of the sensor is based on sandwich immunoreactions between a biomarker and a pair of its antibodies on the test strip, followed by highly sensitive square-wave voltammetry (SWV) detection. Horseradish peroxidase (HRP) was used as a signal reporter for electrochemical readout. Hepatitis B surface antigen (HBsAg) was employed as a model protein biomarker to demonstrate the analytical performance of the sensormore » in this study. Some critical parameters governing the performance of the sensor were investigated in detail. The sensor was further utilized to detect HBsAg in human plasma with an average recovery of 91.3%. In comparison, a colorimetric immunochromatographic test strip assay (ITSA) was also conducted. The result shows that the SWV detection in the electrochemical sensor is much more sensitive for the quantitative determination of HBsAg than the colorimetric detection, indicating that such a sensor is a promising platform for rapid and sensitive point-of-care testing/screening of disease-related biomarkers in a large population« less
  • In this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for Ka-band measurements is 14-17 K, while in W-band the optimalmore » temperatures are between 6-9 K; (iii) W-band is preferable to Ka-band for DEER measurements. Recent achievements and the conditions necessary for short-distance measurements (<15 Å) are also briefly discussed.« less