skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments

Abstract

Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metalmore » tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Savannah River Ecology Laboratory (SREL), Aiken, SC
Sponsoring Org.:
USDOE
OSTI Identifier:
908664
Report Number(s):
SREL-3033
Journal ID: ISSN 0095-3628; MCBEBU; TRN: US200722%%851
DOE Contract Number:
DE-FC09-07SR22506
Resource Type:
Journal Article
Resource Relation:
Journal Name: Microbial Ecology; Journal Volume: 53
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES; ANTIBIOTICS; BACTERIA; COMMUNITIES; FUNCTIONALS; GENES; HOMEOSTASIS; MICROORGANISMS; PROBES; SEDIMENTS; STREPTOMYCES; TELLURIUM; TOLERANCE

Citation Formats

Van Nostrand, J. D., Khijniak, T. V., Gentry, T. J., Novak, M. T., Sowder, A. G., Zhou, J. Z., Bertsch, P. M., and Morris, P. J.. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments. United States: N. p., 2007. Web. doi:10.1007/s00248-006-9160-7.
Van Nostrand, J. D., Khijniak, T. V., Gentry, T. J., Novak, M. T., Sowder, A. G., Zhou, J. Z., Bertsch, P. M., & Morris, P. J.. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments. United States. doi:10.1007/s00248-006-9160-7.
Van Nostrand, J. D., Khijniak, T. V., Gentry, T. J., Novak, M. T., Sowder, A. G., Zhou, J. Z., Bertsch, P. M., and Morris, P. J.. Mon . "Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments". United States. doi:10.1007/s00248-006-9160-7.
@article{osti_908664,
title = {Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments},
author = {Van Nostrand, J. D. and Khijniak, T. V. and Gentry, T. J. and Novak, M. T. and Sowder, A. G. and Zhou, J. Z. and Bertsch, P. M. and Morris, P. J.},
abstractNote = {Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.},
doi = {10.1007/s00248-006-9160-7},
journal = {Microbial Ecology},
number = ,
volume = 53,
place = {United States},
year = {Mon Jan 01 00:00:00 EST 2007},
month = {Mon Jan 01 00:00:00 EST 2007}
}
  • Microbial communities from riparian sediments contaminatedwith high levels of Ni and U were examined for metal-tolerantmicroorganisms. Isolation of four aerobic Ni-tolerant, Gram-positiveheterotrophic bacteria indicated selection pressure from Ni. Theseisolates were identified as Arthrobacter oxydans NR-1, Streptomycesgalbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatosporacystarginea NR-4 based on partial 16S rDNA sequences. A functional genemicroarray containing gene probes for functions associated withbiogeochemical cycling, metal homeostasis, and organic contaminantdegradation showed little overlap among the four isolates. Fifteen of thegenes were detected in all four isolates with only two of these relatedto metal resistance, specifically to tellurium. Each of the four isolatesalso displayed resistance tomore » at least one of six antibiotics tested, withresistance to kanamycin, gentamycin, and ciprofloxacin observed in atleast two of the isolates. Further characterization of S. aureofaciensNR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Nitolerance constitutively. In addition, both were able to grow in higherconcentrations of Ni at pH 6 as compared to pH 7 (42.6 and 8.5 mM Ni atpH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examinedin these two isolates; a similar pH-dependent metal tolerance wasobserved when grown with Co and Zn. Neither isolate was tolerant to Cd.These findings suggest that Ni is exerting a selection pressure at thissite for metal-resistant actinomycetes.« less
  • Cells of Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2{prime}-diamino (G-{sup 3}H) pimelic acid (({sup 3}H)DAP) as models of gram-positive and gram-negative bacteria, respectively. Two experiments were conducted to study the in vivo metabolism of 2,2{prime}-diaminopimelic acid (DAP) in sheep. In experiment 1, cells of ({sup 3}H)DAP-labeled B. megaterium GW1 were infused into the rumen of one sheep and the radiolabel was traced within microbial samples, digesta, and the whole animal. Bacterially bound ({sup 3}H)DAP was extensively metabolized, primarily (up to 70% after 8 h) via decarboxylation to ({sup 3}H)lysine by both ruminal protozoa and ruminalmore » bacteria. Recovery of infused radiolabel in urine and feces was low (42% after 96 h) and perhaps indicative of further metabolism by the host animal. In experiment 2, ({sup 3}H)DAP-labeled B. megaterium GW1 was infused into the rumens of three sheep and ({sup 3}H)DAP-labeled E. coli W7-W5 was infused into the rumen of another sheep. The radioactivity contents of these mutant bacteria were insufficient to use as tracers, but the metabolism of DAP was monitored in the total, free, and peptidyl forms. Free DAP, as a proportion of total DPA in duodenal digesta, varied from 0 to 9.5%, whereas peptidyl DAP accounted for 8.3 to 99.2%.« less
  • The rate, extent, and pattern of dechlorination of four Aroclors by inocula prepared from two polychlorinated biphenyl (PCB)-contaminated sediments were compared. The four mixtures used, Aroclors 1242, 1248, 1254, and 1260, average approximately three, four, five, and six chlorines, respectively, per biphenyl molecule. All four Aroclors were dechlorinated with the loss of meta plus para chlorines ranging from 15 to 85%. Microorganisms from an Aroclor 1242-contaminated site in the upper Hudson River dechlorinated Aroclor 1242 to a greater extent than did microorganisms from Aroclor 1260-contaminated sediments from Silver Lake, Mass. The Silver Lake inoculum dechlorinated Aroclor 1260 more rapidly thanmore » the Hudson River inoculum did and showed a preferential removal of meta chlorines. For each inoculum the rate and extent of dechlorination tended to decrease as the degree of chlorination of the Aroclor increased, especially for Aroclor 1260. The maximal observed dechlorination rates were 0.3, 0.3, and 0.2 {mu}g-atoms of Cl removed per g of sediment per week for Aroclors 1242, 1248, and 1254, respectively. The maximal observed dechlorination rates for Hudson River and Silver Lake organisms for Aroclor 1260 were 0.04 and 0.21 {mu}g-atoms of Cl removed per g of sediment per week, respectively. The dechlorination patterns obtained suggested that the Hudson River microorganisms were more capable than the Silver Lake organisms of removing the last para chlorine.« less
  • The authors report the overexpression, purification, and properties of the regulatory protein, MerR, for a chromosomally encoded mercury resistance determinant from Bacillus strain RC607. This protein is similar in sequence to the metalloregulatory proteins encoded by gram-negative resistance determinants found on transposons Tn21 and Tn501 and to a predicted gene product of a Staphylococcus aureus resistance determinant. In vitro DNA-binding and transcription experiments were used to demonstrate those purified Bacillus MerR protein controls transcription from a promoter-operator site similar in sequence to that found in the transposon resistance determinants. The Bacillus MerR protein bound in vitro to its promoter-operator regionmore » in both the presence and absence of mercuric ion and functioned as a negative and positive regulator of transcription. The MerR protein bound less tightly to its operator region (ca. 50- to 100-fold) in the presence of mercuric ion; this reduced affinity was largely accounted for by an increased rate of dissociation of the MerR protein from the DNA. Despite this reduced DNA-binding affinity, genetic and biochemical evidence support a model in which the MerR protein-mercuric ion complex is a positive regulator of operon transcription. Although the Bacillus MerR protein bound only weakly to the heterologous Tn501 operator region, the Tn501 and Tn21 MerR proteins bound with high affinity to the Bacillus promoter-operator region and exhibited negative, but not positive, transcriptional control.« less