skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The test stand system for the PHENIX iFVTX silicon detector

Abstract

PHENIX is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider (RHIC), and the iFVTX is a new pixel tracker which will be installed in the forward tracker region of PHENIX. Fermilab has developed a complete test stand system for the examination of FPix2.1 modules, hybrids, and pixel chips that will be installed in the iFVTX. The system is currently in use for chip, module, and wafer testing at Fermilab. The test stand architecture is flexible and can be adapted to new requirements. In this paper, the software and hardware integration will be discussed followed by an analysis of the advantages of choosing a modular approach for the system. Finally, a selection of tests supported by the system, along with sample results, will be presented and explained.

Authors:
; ;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
908361
Report Number(s):
FERMILAB-CONF-07-098-CD
TRN: US0703670
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: Presented at 15th IEEE Real Time Conference 2007 (RT 07), Batavia, Illinois, 29 Apr - 4 May 2007
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; FERMILAB; HEAVY IONS; SILICON; TESTING; DETECTION; Instrumentation

Citation Formats

Rivera, Ryan A., Turqueti, Marcos A., and /Fermilab. The test stand system for the PHENIX iFVTX silicon detector. United States: N. p., 2007. Web.
Rivera, Ryan A., Turqueti, Marcos A., & /Fermilab. The test stand system for the PHENIX iFVTX silicon detector. United States.
Rivera, Ryan A., Turqueti, Marcos A., and /Fermilab. Tue . "The test stand system for the PHENIX iFVTX silicon detector". United States. doi:. https://www.osti.gov/servlets/purl/908361.
@article{osti_908361,
title = {The test stand system for the PHENIX iFVTX silicon detector},
author = {Rivera, Ryan A. and Turqueti, Marcos A. and /Fermilab},
abstractNote = {PHENIX is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider (RHIC), and the iFVTX is a new pixel tracker which will be installed in the forward tracker region of PHENIX. Fermilab has developed a complete test stand system for the examination of FPix2.1 modules, hybrids, and pixel chips that will be installed in the iFVTX. The system is currently in use for chip, module, and wafer testing at Fermilab. The test stand architecture is flexible and can be adapted to new requirements. In this paper, the software and hardware integration will be discussed followed by an analysis of the advantages of choosing a modular approach for the system. Finally, a selection of tests supported by the system, along with sample results, will be presented and explained.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • A test stand for the next generation of the Silicon Vertex Detector (SVX-II) of the Collider Detector Facility (CDF) at Fermilab has been developed. It is capable of performing cosmic ray, beam, and laser pulsing tests on silicon strip detectors using the new generation of SVX chips. The test stand is composed of a SGI workstation, a VME CPU, the Silicon Test Acquisition and Readout (STAR) board, the Test Fiber Interface Board (TFIB), and the Test Port Card (TPC). The STAR mediates between external stimuli for the different tests and produces appropriate high level commands which are sent to themore » TFIB. The TFIB, in conjunction with the TPC, translates these commands into the correct logic levels to control the SVX chips. The four modes of operation of the SVX chips are configuration, data acquisition, digitization, and data readout. The data read out from the SVX chips is transferred to the STAR. The STAR can then be accessed by the VME CPU and the SGI workstation for future analysis. The detailed description of this test stand is given.« less
  • The system architecture and test results of the custom circuits and beam test system for the Multiplicity-Vertex Detector (MVD) for the PHENIX detector collaboration at the Relativistic Heavy Ion Collider (RHIC) are presented in this paper. The final detector per-channel signal processing chain will consist of a preamplifier-gain stage, a current-mode summed multiplicity discriminator, a 64-deep analog memory (simultaneous read-write), a post-memory analog correlator, and a 10-bit 5 {mu}s ADC. The Heap Manager provides all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Beam test (16-cellmore » deep memory) performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 {mu} n-well CMOS process used for preamplifier fabrication.« less
  • The system architecture and test results of the custom circuits and beam test system for the Multiplicity-Vertex Detector (MVD) for the PHENIX detector collaboration at the Relativistic Heavy Ion Collider (RHIC) are presented in this paper. The final detector per-channel signal processing chain will consist of a preamplifier-gain stage, a current-mode summed multiplicity discriminator, a 64-deep analog memory (simultaneous read-write), a post-memory analog correlator, and a 10-bit 5 {mu}s ADC. The Heap Manager provides all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Beam test (16-cellmore » deep memory) performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 {mu} n-well CMOS process used for preamplifier fabrication.« less
  • The three-dimensional flow and thermal fields surrounding the large PHENIX sub-atomic particle detector enclosed in the Major Facility Hall are simulated numerically in this study using the CFX finite volume, commercial, computer code. The predicted fields result from the interaction of an imposed downward ventilation system cooling flow and a buoyancy-driven thermal plume rising from the warm detector. An understanding of the thermal irregularities on the surface of the detector and in the flow surrounding is needed to assess the potential for adverse thermal expansion effects in detector subsystems, and to prevent ingestion of electronics cooling air from hot spots.more » With a computational model of the thermal fields on and surrounding the detector, HVAC engineers can evaluate and improve the ventilation system design prior to the start of construction. This paper summarizes modeling and results obtained for a conceptual MFH ventilation scheme.« less
  • The PHENIX experiment at RHIC has extended its scope to cover spin physics using polarized proton beams. The major goals of the spin physics at RHIC are elucidation of the spin structure of the nucleon and precision tests of the symmetries. Sensitivities of the spin physics measurements with the PHENIX detector system are reviewed.