skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Network and adaptive system of systems modeling and analysis.

Abstract

This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.

Authors:
;  [1]; ; ;
  1. (.
Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
USDOE
OSTI Identifier:
908063
Report Number(s):
SAND2007-2788
TRN: US200722%%173
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; ADAPTIVE SYSTEMS; RELIABILITY; NETWORK ANALYSIS; SYSTEMS ANALYSIS; MATHEMATICAL MODELS; MILITARY EQUIPMENT; COMMUNICATIONS; Network analysis (Planning); Combat.; Communications, Military.

Citation Formats

Lawton, Craig R., Campbell, James E. Dr., .), Anderson, Dennis James, and Eddy, John P. Network and adaptive system of systems modeling and analysis.. United States: N. p., 2007. Web. doi:10.2172/908063.
Lawton, Craig R., Campbell, James E. Dr., .), Anderson, Dennis James, & Eddy, John P. Network and adaptive system of systems modeling and analysis.. United States. doi:10.2172/908063.
Lawton, Craig R., Campbell, James E. Dr., .), Anderson, Dennis James, and Eddy, John P. Tue . "Network and adaptive system of systems modeling and analysis.". United States. doi:10.2172/908063. https://www.osti.gov/servlets/purl/908063.
@article{osti_908063,
title = {Network and adaptive system of systems modeling and analysis.},
author = {Lawton, Craig R. and Campbell, James E. Dr. and .) and Anderson, Dennis James and Eddy, John P.},
abstractNote = {This report documents the results of an LDRD program entitled ''Network and Adaptive System of Systems Modeling and Analysis'' that was conducted during FY 2005 and FY 2006. The purpose of this study was to determine and implement ways to incorporate network communications modeling into existing System of Systems (SoS) modeling capabilities. Current SoS modeling, particularly for the Future Combat Systems (FCS) program, is conducted under the assumption that communication between the various systems is always possible and occurs instantaneously. A more realistic representation of these communications allows for better, more accurate simulation results. The current approach to meeting this objective has been to use existing capabilities to model network hardware reliability and adding capabilities to use that information to model the impact on the sustainment supply chain and operational availability.},
doi = {10.2172/908063},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • Nuclear safeguards systems are concerned with the physical protection and control of nuclear materials. The Safeguards Network Analysis Procedure (SNAP) provides a convenient and standard analysis methodology for the evaluation of safeguards system effectiveness. This is achieved through a standard set of symbols which characterize the various elements of safeguards systems and an analysis program to execute simulation models built using the SNAP symbology. The reports provided by the SNAP simulation program enable analysts to evaluate existing sites as well as alternative design possibilities. This paper describes the SNAP modeling technique and provides an example illustrating its use.
  • This report presents results for design and analysis of the hot model water cooling system for the Spallation Neutron Source (SNS) coupled-cavity linac (CCL). The hot model, when completed, will include segments for both the CCL and coupled-cavity drift-tube linac (CCDTL). The scope of this report encompasses the modeling effort for the CCL portion of the hot model. This modeling effort employed the SINDA/FLUINT network modeling tool. This report begins with an introduction of the SNS hot model and network modeling using SINDA/FLUINT. Next, the development and operation of the SINDA/FLUINT model are discussed. Finally, the results of the SINDA/FLUINTmore » modeling effort are presented and discussed.« less
  • The Freight Network Modeling System (FNEM) is a general and flexible modeling system designed to have wide applicability to a variety of freight transportation analyses. The system consists of compatible network data bases, data management software, models of freight transportation, report generators, and graphics output. In many studies, a model as comprehensive as FNEM is not required. The second model, Shortest-Path Analysis and Display (SPAD), is a simpler model that optimizes routings of single shipments. The routing criteria that can be used are numerous - including minimizing cost, minimizing delay, minimizing population exposure (useful when considering shipments of hazardous materials),more » and minimizing accident risk. In addition to the above criteria, the routes can also be restricted to those with clearance for oversized loads or with sufficient load capabilities. SPAD can be used interactively and the routes can be displayed graphically. This volume contains a user's guide for SPAD including preprocessor programs and SPAD execution. 7 figs., 19 tabs.« less
  • This Volume 1 of the final report on RP2665-1 contains two parts. part 1 consists of the following: (1) a literature review of real-time parameter identification algorithms which may be used in self-tuning adaptive control; (2) a description of mathematical discrete-time models that are linear in the parameters and that are useful for self-tuning adaptive control; (3) detailed descriptions of several variations of recursive-least-squares algorithms (RLS algorithms) and a unified representation of some of these algorithms; (4) a new variation of RLS called Corrector Least Squares (CLS); (5) a set of practical issues that need to be addressed in themore » implementation of RLS-based algorithms; (6) a set of simulation examples that illustrate properties of the identification methods; and (7) appendices With FORTRAN listings of several identification codes. Part 2 of this volume addresses the problem of damping electromechanical oscillations in power systems using advanced control theory. Two control strategies are developed. Controllers are then applied to a power system as power system stabilizer (PSS) units. The primary strategy is a decentralized indirect adaptive control scheme where multiple self-tuning adaptive controllers are coordinated. This adaptive scheme is presented in a general format and the stabilizing properties are demonstrated using examples. Both the adaptive and the conventional strategies are applied to a 17-machine computer-simulated power system. PSS units are applied to four generators in the system. Detailed simulation results are presented that show the feasibility and properties of both control schemes. FORTRAN codes for the control simulations are given in appendices of Part 2, as also are FORTRAN codes for the Prony identification method.« less
  • A conventional pulse-echo imaging system has been modified to operate with a linear ultrasonic array and associated digital electronics to collect data from a series of defects fabricated in aircraft quality steel blocks. A thorough analysis of the defect responses recorded with this modified system has shown that considerable improvements over conventional imaging approaches can be obtained in the crucial areas of defect detection and characterization. A combination of advanced signal processing concepts with the Adaptive Learning Network (ALN) methodology forms the basis for these improvements. Use of established signal processing algorithms such as temporal and spatial beam-forming in concertmore » with a sophisticated detector has provided a reliable defect detection scheme which can be implemented in a microprocessor-based system to operate in an automatic mode.« less