skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006

Abstract

This report summarizes Energy Conversion Devices' diagnostic systems that were developed in this program, as well as ECD's other major accomplishments. This report concentrates on work carried out in the final (third) phase of this program, beginning in the fall of 2004 and ending in the fall of 2006. ECD has developed a comprehensive in-situ diagnostic system that: Reduces the time between deposition in the a-Si machine and device characterization from about 200 h to about 1 h; The Photovoltaic Capacitive Diagnostic systems measure the open-circuit voltage and charging rate (a measure of the short-circuit current) and intra-cell series resistance for each cell in the triple-junction device prior to deposition of the top conductive-oxide coating in a subsequent deposition machine. These systems operate with an rms precision of about 0.03% and have operated for almost 4 years with no need for servicing of the electronics or for calibration; Spectrometers are used to measure the ZnO thickness of the backreflector, a Si thickness, and top conductive-oxide, coatings.

Authors:
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
908019
Report Number(s):
NREL/SR-520-41560
ZDO-0-30628-11; TRN: US200722%%399
DOE Contract Number:
AC36-99-GO10337
Resource Type:
Technical Report
Resource Relation:
Related Information: Work performed by Energy Conversion Devices, Inc., Troy, Michigan
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; 47 OTHER INSTRUMENTATION; CALIBRATION; COATINGS; DEPOSITION; ENERGY CONVERSION; IMPLEMENTATION; PRODUCTION; SILICON SOLAR CELLS; SPECTROMETERS; THICKNESS; SOLAR ENERGY; DIAGNOSTIC TECHNIQUES; PV; ON-LINE CLOSED-LOOP DIAGNOSTIC SYSTEM; AMORPHOUS SILICON; SOLAR CELLS; PHOTOVOLTAIC CAPACITIVE DIAGNOSTIC (PVCD); OPEN-CIRCUIT VOLTAGE; CHARGING RATE; SHORT-CIRCUIT CURRENT; TOP CONDUCTIVE OXIDE COATING; BACKREFLECTOR; TRIPLE-JUNCTION DEVICE; Solar Energy - Photovoltaics

Citation Formats

Ellison, T. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006. United States: N. p., 2007. Web. doi:10.2172/908019.
Ellison, T. Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006. United States. doi:10.2172/908019.
Ellison, T. Tue . "Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006". United States. doi:10.2172/908019. https://www.osti.gov/servlets/purl/908019.
@article{osti_908019,
title = {Implementation of a Comprehensive On-Line Closed-Loop Diagnostic System for Roll-to-Roll Amorphous Silicon Solar Cell Production: Final Subcontract Report, 23 April 2003 - 30 September 2006},
author = {Ellison, T.},
abstractNote = {This report summarizes Energy Conversion Devices' diagnostic systems that were developed in this program, as well as ECD's other major accomplishments. This report concentrates on work carried out in the final (third) phase of this program, beginning in the fall of 2004 and ending in the fall of 2006. ECD has developed a comprehensive in-situ diagnostic system that: Reduces the time between deposition in the a-Si machine and device characterization from about 200 h to about 1 h; The Photovoltaic Capacitive Diagnostic systems measure the open-circuit voltage and charging rate (a measure of the short-circuit current) and intra-cell series resistance for each cell in the triple-junction device prior to deposition of the top conductive-oxide coating in a subsequent deposition machine. These systems operate with an rms precision of about 0.03% and have operated for almost 4 years with no need for servicing of the electronics or for calibration; Spectrometers are used to measure the ZnO thickness of the backreflector, a Si thickness, and top conductive-oxide, coatings.},
doi = {10.2172/908019},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue May 01 00:00:00 EDT 2007},
month = {Tue May 01 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • This subcontract report describes how Energy Conversion Devices, Inc., has developed and built 7 generations of roll-to-roll amorphous silicon PV production equipment. In the ECD/United Solar production process, we deposit about a 1-mm-thick, 12-layer coating consisting of a metal/oxide backreflector, a 9-layer a-Si/a-SiGe alloy triple-junction solar cell, and top transparent conductive oxide coating onto 125-mm-thick, 35.5-cm-wide stainless-steel webs in a series of three roll-to-roll deposition machines. In the PV Manufacturing R&D 6 program, ECD is building upon these accomplishments to enhance the operation of the present production machine, and lay the foundation for improvements in the next-generation machine. ECD hasmore » completed the Phase I work for the first two Tasks, and will complete the Phase I work for the second two tasks within the next two months. In the following report, we summarize the Phase I work in each of these tasks. We have involved United Solar production personnel in each of these Tasks. This is important for two reasons: First, the collaboration of ECD and United Solar personnel keeps the projects responsive to the developing needs at United Solar; and most of the tasks affect operations and consequently need the support of United Solar production and QA/QC managers. In the process we have developed a good working relationship between the production personnel, whose mantra is''change nothing,'' and the R&D personnel, who mantra is''change everything.''« less
  • Energy Conversion Devices, Inc. (ECD) has developed and built 7 generations of roll-to-roll amorphous silicon PV production equipment. In the ECD/United Solar Ovonic production process, we deposit about a 1-mm-thick, 12-layer coating consisting of a metal/oxide backreflector, a - layer a-Si/a-SiGe alloy triple-junction solar cell, and a top transparent conductive oxide coating onto 125-mm-thick, 35.5-cm-wide stainless steel webs in a series of three roll-to-roll deposition machines. ECD has now completed the Phase II work for this program. In the following report, we summarize the Phase II work in each of these tasks. We have involved United Solar production personnel inmore » each of these Tasks. This is important for two reasons: Firstly, the collaboration of ECD and United Solar personnel keeps the projects responsive to the developing needs at United Solar. Secondly, most of the tasks affect operations and consequently need the support of United Solar production and QA/QC managers. In the process, we have developed a good working relationship between the production personnel and good balance between optimizing production, while also ''adiabatically'' improving the manufacturing equipment.« less
  • This report describes work for this reporting period under a 3-year program to advance Energy Conversion Device`s (ECD) roll-to-roll, triple-junction photovoltaic (PV) manufacturing technologies, to reduce the module production costs, to increase the stabilized module performance, and to expand commercial production capacity utilizing ECD technology. The specific 3-year goal is to develop advanced large-scale manufacturing technology incorporating ECD`s earlier research advances with the capability of producing modules with stable 11% efficiency at a cost of approximately $1.00 per peak watt. Major accomplishments during this reporting period include (1) the design, construction. amd testomg of a continuous roll-to-roll multipurpose amorphous siliconmore » alloy solar cell deposition machine that incorporates improvements necessary to obtain higher efficiency solar cells; (2) development of a photothermal deflection spectroscopy (PDS) technique for evaluating back-reflector systems; (3) the development of an improved textured Ag/ZnO back-reflector system demonstrating 25% gain in J{sub sc} over previous textured Al back-reflector systems; and (4) the design of a serpentine web continuous roll-to-roll deposition chamber.« less
  • This report describes work performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys for the nanometer size scale. The materials studied were prepared by current state-of-the-art deposition methods, as well as new and emerging deposition techniques. The purpose was to establish the role of microstructural features in controlling the opto-electronic and photovoltaic properties. The approach centered around the use of the uncommon technique of small-angle X-ray scattering (SAXS), which is highly sensitive to microvoids and columnar-like microstructure. Nanovoids of H-rich clusters with 1 to 4 nm sizes in a-Si:H at the 1 vol.% levelmore » correlate with poor solar-cell and opto-electronic behavior. Larger-scale features due either to surface roughness or residual columnar-like structures were found in present state-of-the-art device material. Ge alloying above about 10 to 20 at.% typically leads to significant increases in heterogeneity , and this has been shown to be due in part to non-uniform Ge distributions. Ge additions also cause columnar-like growth, but this can be reduced or eliminated by enhanced ion bombardment during growth. In contrast, C alloying typically induces a random nanostructure consisting of a narrow size distribution of 1-nm-sized objects with a high density, consistent with the notably poorer opto-electronic behavior of these alloys.« less
  • The objective of the PV Manufacturing R&D subcontract was to continue to improve AstroPower's technology for manufacturing Silicon-Film* wafers, solar cells, and modules to reduce costs, and increase production yield, throughput, and capacity. As part of the effort, new technology such as the continuous back metallization screen-printing system and the laser scribing system were developed and implemented. Existing processes, such as the silicon nitride antireflection coating system and the fire-through process were optimized. Improvements were made to the statistical process control (SPC) systems of the major manufacturing processes: feedstock preparation, wafer growth, surface etch, diffusion, and the antireflection coating process.more » These process improvements and improved process control have led to an increase of 5% relative power, and nearly 15% relative improvement in mechanical and visual yield.« less