skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: INVESTIGATING HYDROGEN GENERATION AND CORROSION IN THE TREATMENT TANK AND THE POTENTIAL FORMATION OF A FLOATING LAYER IN NEUTRALIZATION TANK DURING WASTE TANK HEEL CHEMICAL CLEANING

Abstract

No abstract prepared.

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
903402
Report Number(s):
WSRC-STI-2007-00209
TRN: US200722%%122
DOE Contract Number:
DE-AC09-96SR18500
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN; CLEANING; CORROSION; TANKS; WASTES; HYDROGEN

Citation Formats

Herman, D, Bruce Wiersma, B, Fernando Fondeur, F, James Wittkop, J, John Pareizs, J, Kim Crapse, K, Michael Hay, M, Michael Poirier, M, and Samuel Fink, S. INVESTIGATING HYDROGEN GENERATION AND CORROSION IN THE TREATMENT TANK AND THE POTENTIAL FORMATION OF A FLOATING LAYER IN NEUTRALIZATION TANK DURING WASTE TANK HEEL CHEMICAL CLEANING. United States: N. p., 2007. Web. doi:10.2172/903402.
Herman, D, Bruce Wiersma, B, Fernando Fondeur, F, James Wittkop, J, John Pareizs, J, Kim Crapse, K, Michael Hay, M, Michael Poirier, M, & Samuel Fink, S. INVESTIGATING HYDROGEN GENERATION AND CORROSION IN THE TREATMENT TANK AND THE POTENTIAL FORMATION OF A FLOATING LAYER IN NEUTRALIZATION TANK DURING WASTE TANK HEEL CHEMICAL CLEANING. United States. doi:10.2172/903402.
Herman, D, Bruce Wiersma, B, Fernando Fondeur, F, James Wittkop, J, John Pareizs, J, Kim Crapse, K, Michael Hay, M, Michael Poirier, M, and Samuel Fink, S. Mon . "INVESTIGATING HYDROGEN GENERATION AND CORROSION IN THE TREATMENT TANK AND THE POTENTIAL FORMATION OF A FLOATING LAYER IN NEUTRALIZATION TANK DURING WASTE TANK HEEL CHEMICAL CLEANING". United States. doi:10.2172/903402. https://www.osti.gov/servlets/purl/903402.
@article{osti_903402,
title = {INVESTIGATING HYDROGEN GENERATION AND CORROSION IN THE TREATMENT TANK AND THE POTENTIAL FORMATION OF A FLOATING LAYER IN NEUTRALIZATION TANK DURING WASTE TANK HEEL CHEMICAL CLEANING},
author = {Herman, D and Bruce Wiersma, B and Fernando Fondeur, F and James Wittkop, J and John Pareizs, J and Kim Crapse, K and Michael Hay, M and Michael Poirier, M and Samuel Fink, S},
abstractNote = {No abstract prepared.},
doi = {10.2172/903402},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Apr 30 00:00:00 EDT 2007},
month = {Mon Apr 30 00:00:00 EDT 2007}
}

Technical Report:

Save / Share:
  • At the Savannah River Site in Aiken, South Carolina, there are approximately 40 million gallons of legacy High Level Waste stored in large capacity sub-surface tanks. Twelve of these tanks are single-containment, non-conforming tanks with leaks. These tanks were built in the 1950s. Some of these tanks contain sludge heels and are being considered for near-term removal efforts and vitrification. Currently, only mechanical methods (i.e., pumps) are used to remove the sludge waste with varying degrees of success. To provide for additional levels of removal, chemically-aided techniques are being considered. The objective of the was to collect and evaluate informationmore » available on chemical-based methods for removing residual solids from the Site's waste tanks. As part of this study, the team was requested to develop recommendations for chemical treatments to remove residual heels (primarily sludge). Ideally, one agent alone would be efficient at dissolving all residual tank heels and yet satisfy all safety and process concerns. No such chemical cleaning agent was found. The cleaning agents identified from the literature, included oxalic acid, a mixture of oxalic acid and citric acid, a combination of oxalic acid with hydrogen peroxide, nitric acid, formic acid, and organics. A criteria matrix for evaluating the various cleaning agents was developed. The results of the evaluation conclusively support oxalic acid as the cleaning agent of choice for the immediate future. Oxalic acid scored nearly double the next closest cleaning agent. Nitric acid, formic acid, and oxalic acid with hydrogen peroxide were all closely grouped for the next best choice. The mixture of oxalic acid and citric acid rated poorly. Organics rated even more poorly due to large uncertainties in performance and downstream impacts.« less
  • Radioactive waste is stored in high level waste tanks on the Savannah River Site (SRS). Savannah River Remediation (SRR) is aggressively seeking to close the non-compliant Type I and II waste tanks. The removal of sludge (i.e., metal oxide) heels from the tank is the final stage in the waste removal process. The Enhanced Chemical Cleaning (ECC) process is being developed and investigated by SRR to aid in Savannah River Site (SRS) High-Level Waste (HLW) as an option for sludge heel removal. Corrosion rate data for carbon steel exposed to the ECC treatment tank environment was obtained to evaluate themore » degree of corrosion that occurs. These tests were also designed to determine the effect of various environmental variables such as temperature, agitation and sludge slurry type on the corrosion behavior of carbon steel. Coupon tests were performed to estimate the corrosion rate during the ECC process, as well as determine any susceptibility to localized corrosion. Electrochemical studies were performed to develop a better understanding of the corrosion mechanism. The tests were performed in 1 wt.% and 2.5 wt.% oxalic acid with HM and PUREX sludge simulants. The following results and conclusions were made based on this testing: (1) In 1 wt.% oxalic acid with a sludge simulant, carbon steel corroded at a rate of less than 25 mpy within the temperature and agitation levels of the test. No susceptibility to localized corrosion was observed. (2) In 2.5 wt.% oxalic acid with a sludge simulant, the carbon steel corrosion rates ranged between 15 and 88 mpy. The most severe corrosion was observed at 75 C in the HM/2.5 wt.% oxalic acid simulant. Pitting and general corrosion increased with the agitation level at this condition. No pitting and lower general corrosion rates were observed with the PUREX/2.5 wt.% oxalic acid simulant. The electrochemical and coupon tests both indicated that carbon steel is more susceptible to localized corrosion in the HM/oxalic acid environment than in the PUREX/oxalic acid environment. (3) The corrosion rates for PUREX/8 wt.% oxalic acid were greater than or equal to those observed for the PUREX/2.5 wt.% oxalic acid. No localized corrosion was observed in the tests with the 8 wt.% oxalic acid. Testing with HM/8 wt.% oxalic acid simulant was not performed. Thus, a comparison with the results with 2.5 wt.% oxalic acid, where the corrosion rate was 88 mpy and localized corrosion was observed at 75 C, cannot be made. (4) The corrosion rates in 1 and 2.5 wt.% oxalic acid solutions were temperature dependent: (a) At 50 C, the corrosion rates ranged between 90 to 140 mpy over the 30 day test period. The corrosion rates were higher under stagnant conditions. (b) At 75 C, the initial corrosion rates were as high as 300 mpy during the first day of exposure. The corrosion rates increased with agitation. However, once the passive ferrous oxalate film formed, the corrosion rate decreased dramatically to less than 20 mpy over the 30 day test period. This rate was independent of agitation. (5) Electrochemical testing indicated that for oxalic acid/sludge simulant mixtures the cathodic reaction has transport controlled reaction kinetics. The literature suggests that the dissolution of the sludge produces a di-oxalatoferrate ion that is reduced at the cathodic sites. The cathodic reaction does not appear to involve hydrogen evolution. On the other hand, electrochemical tests demonstrated that the cathodic reaction for corrosion of carbon steel in pure oxalic acid involves hydrogen evolution. (6) Agitation of the oxalic acid/sludge simulant mixtures typically resulted in a higher corrosion rates for both acid concentrations. The transport of the ferrous ion away from the metal surface results in a less protective ferrous oxalate film. (7) A mercury containing species along with aluminum, silicon and iron oxides was observed on the interior of the pits formed in the HM/2.5 wt.% oxalic acid simulant at 75 C. The pitting rates in the agitated and non-agitated solution were 2 mils/day and 1 mil/day, respectively. A mechanism by which the mercury interacts with the aluminum and silicon oxides in this simulant to accelerate corrosion was proposed.« less
  • Laboratory experiments were conducted to simulate the transfer of acidic THOREX waste from Tank 8D-4 into the alkaline PUREX waste in Tank 8D-2 at West Valley. The purpose of the experiments was to explore means of minimizing the production of nitric oxide (NO) gas during mixing of the two wastes and to assess the potential for the gas to further react in the vapor space possibly leading to enhanced corrosion of the tank walls. Forty one THOREX/PUREX mixing tests were conducted to explore the effects of stirring rate, pH, THOREX addition rate, THOREX or PUREX dilution, and temperature. The twomore » most important criteria for minimizing NO production were to maintain some degree of agitation and the keep the pH in the PUREX high, preferably >12. Steel corrosion tests were performed in the presence of low partial pressures of NO{sub 2} and liquid water or water vapor. The NO{sub 2} (from oxidation of NO in the vapor space) concentrations were representative of those derived from the THOREX/PUREX mixing tests. It was concluded that no significant corrosion of the tank walls would be expected under the anticipated THOREX/PUREX mixing conditions if the exposure was short (<100 days).« less
  • The presence of corrosive and inhibiting chemicals on the tank walls in the vapor space, arising from the waste supernatant, dictate the type and degree of corrosion that occurs there. An understanding of how waste chemicals are transported to the walls and the affect on vapor species from changing supernatant chemistry (e.g., pH, etc.), are basic to the evaluation of risks and impacts of waste changes on vapor space corrosion (VSC). In order to address these issues the expert panel workshop on double-shell tank (DST) vapor space corrosion testing (RPP-RPT-31129) participants made several recommendations on the future data and modelingmore » needs in the area of DST corrosion. In particular, the drying of vapor phase condensates or supernatants can form salt or other deposits at the carbon steel interface resulting in a chemical composition at the near surface substantially different from that observed directly in the condensates or the supernatants. As a result, over the past three years chemical modeling and experimental studies have been performed on DST supernatants and condensates to predict the changes in chemical composition that might occur as condensates or supernatants equilibrate with the vapor space species and dry at the carbon steel surface. The experimental studies included research on both the chemical changes that occurred as the supernatants dried as well as research on how these chemical changes impact the corrosion of tank steels. The chemical modeling and associated experimental studies were performed at the Pacific Northwest National Laboratory (PNNL) and the research on tank steel corrosion at the Savannah River National Laboratory (SRNL). This report presents a summary of the research conducted at PNNL with special emphasis on the most recent studies conducted in FY10. An overall summary of the project results as well as their broader implications for vapor space corrosion of the DST’s is given at the end of this report.« less
  • This document updates the Eh-pH transitions from grout aging simulations and the plutonium waste release model of Denham (2007, Rev. 1) based on new data. New thermodynamic data for cementitious minerals are used for the grout simulations. Newer thermodynamic data, recommended by plutonium experts (Plutonium Solubility Peer Review Report, LA-UR-12-00079), are used to estimate solubilities of plutonium at various pore water compositions expected during grout aging. In addition, a new grout formula is used in the grout aging simulations and apparent solubilities of coprecipitated plutonium are estimated using data from analysis of Tank 18 residual waste. The conceptual model ofmore » waste release and the grout aging simulations are done in a manner similar to that of Denham (2007, Rev. 1). It is assumed that the pore fluid composition passing from the tank grout into the residual waste layer controls the solubility, and hence the waste release concentration of plutonium. Pore volumes of infiltrating fluid of an assumed composition are reacted with a hypothetical grout block using The Geochemist's Workbench{reg_sign} and changes in pore fluid chemistry correspond to the number of pore fluid volumes reacted. As in the earlier document, this results in three states of grout pore fluid composition throughout the simulation period that are termed Reduced Region II, Oxidized Region II, and Oxidized Region III. The one major difference from the earlier document is that pyrite is used to account for reducing capacity of the tank grout rather than pyrrhotite. This poises Eh at -0.47 volts during Reduced Region II. The major transitions in pore fluid composition are shown. Plutonium solubilities are estimated for discrete PuO2(am,hyd) particles and for plutonium coprecipitated with iron phases in the residual waste. Thermodynamic data for plutonium from the Nuclear Energy Agency are used to estimate the solubilities of the discrete particles for the three stages of pore fluid evolution. In Denham (2007, Rev. 1), the solubilities in the oxidized regions were estimated at Eh values in equilibrium with dissolved oxygen. Here, these are considered to be maximum possible solubilities because Eh values are unlikely to be in equilibrium with dissolved oxygen. More realistic Eh values are estimated here and plutonium solubilities calculated at these are considered more realistic. Apparent solubilities of plutonium that coprecipitated with iron phases are estimated from Pu:Fe ratios in Tank 18 residual waste and the solubilities of the host iron phases. The estimated plutonium solubilities are shown. Uncertainties in the grout simulations and plutonium solubility estimates are discussed. The primary uncertainty in the grout simulations is that little is known about the physical state of the grout as it ages. The simulations done here are pertinent to a porous medium, which may or may not be applicable to fractured grout, depending on the degree and nature of the fractures. Other uncertainties that are considered are the assumptions about the reducing capacity imparted by blast furnace slag, the effects of varying dissolved carbon dioxide and oxygen concentrations, and the treatment of silica in the simulations. The primary uncertainty in the estimates of plutonium solubility is that little is known about the exact form of plutonium in the residual waste. Other uncertainties include those inherent in the thermodynamic data, pH variations from those estimated in the grout simulations, the effects of the treatment of silica in the grout simulations, and the effect of varying total dissolved carbonate concentrations. The objective of this document is to update the model for solubility controls on release of plutonium from residual waste in closed F-Area waste tanks. The update is based on new information including a new proposed grout formulation, chemical analysis of Tank 18 samples and more current thermodynamic data for plutonium and grout minerals. In addition, minor changes to the modeling of the grout chemical evolution have been made. It should be noted that the intent is to provide bounding solubilities for plutonium to be used in Performance Assessment modeling rather than trying to identify an exact concentration of plutonium in pore fluids released from a tank at any given time. This document also considers suggestions and opportunities for improvement regarding the plutonium modeling assumptions from the Plutonium Solubility Peer Review Report, LA-UR-12-00079.« less