skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recovery of temperate Desulfovibrio vulgaris bacteriophage on anovel host strain

Abstract

A novel sulfate-reducing bacterium (strain DePue) closelyrelated to Desulfovibrio vulgaris ssp. vulgaris strain Hildenborough wasisolated from the sediment of a heavy-metal impacted lake usingestablished techniques. Although few physiological differences betweenstrains DePue and Hildenborough were observed, pulsed-field gelelectrophoresis (PFGE) revealed a significant genome reduction in strainDePue. Comparative whole-genome microarray and PCR analyses demonstratedthat the absence of genes annotated in the Hildenborough genome as phageor phage-related contributed to the significant genome reduction instrain DePue. Two morphotypically distinct temperate bacteriophage fromstrain Hildenborough were recovered using strain DePue as a host forplaque isolation.

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
COLLABORATION - U. ofWashington
OSTI Identifier:
903368
Report Number(s):
LBNL-60457
Journal ID: ISSN 1462-2912; R&D Project: VGTLTH; BnR: KP1102010; TRN: US200720%%300
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Environmental Microbiology; Journal Volume: 8; Journal Issue: 10; Related Information: Journal Publication Date: November,2006
Country of Publication:
United States
Language:
English
Subject:
59; 54; BACTERIOPHAGES; DESULFOVIBRIO; ELECTROPHORESIS; GENES; SEDIMENTS; STRAINS; bioremediation comparative genomics environmental genomicssulfate reducers

Citation Formats

Walker, C.B., Stolyar, S.S., Pinel, N., Yen, H.C., He, Z., Zhou,J., Wall, J.D., and Stahl, D.A.. Recovery of temperate Desulfovibrio vulgaris bacteriophage on anovel host strain. United States: N. p., 2007. Web.
Walker, C.B., Stolyar, S.S., Pinel, N., Yen, H.C., He, Z., Zhou,J., Wall, J.D., & Stahl, D.A.. Recovery of temperate Desulfovibrio vulgaris bacteriophage on anovel host strain. United States.
Walker, C.B., Stolyar, S.S., Pinel, N., Yen, H.C., He, Z., Zhou,J., Wall, J.D., and Stahl, D.A.. Mon . "Recovery of temperate Desulfovibrio vulgaris bacteriophage on anovel host strain". United States. doi:.
@article{osti_903368,
title = {Recovery of temperate Desulfovibrio vulgaris bacteriophage on anovel host strain},
author = {Walker, C.B. and Stolyar, S.S. and Pinel, N. and Yen, H.C. and He, Z. and Zhou,J. and Wall, J.D. and Stahl, D.A.},
abstractNote = {A novel sulfate-reducing bacterium (strain DePue) closelyrelated to Desulfovibrio vulgaris ssp. vulgaris strain Hildenborough wasisolated from the sediment of a heavy-metal impacted lake usingestablished techniques. Although few physiological differences betweenstrains DePue and Hildenborough were observed, pulsed-field gelelectrophoresis (PFGE) revealed a significant genome reduction in strainDePue. Comparative whole-genome microarray and PCR analyses demonstratedthat the absence of genes annotated in the Hildenborough genome as phageor phage-related contributed to the significant genome reduction instrain DePue. Two morphotypically distinct temperate bacteriophage fromstrain Hildenborough were recovered using strain DePue as a host forplaque isolation.},
doi = {},
journal = {Environmental Microbiology},
number = 10,
volume = 8,
place = {United States},
year = {Mon Apr 02 00:00:00 EDT 2007},
month = {Mon Apr 02 00:00:00 EDT 2007}
}
  • In recent years, the genetic manipulation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has seen enormous progress. In spite of this progress, the current marker exchange deletion method does not allow for easy selection of multiple sequential gene deletions in a single strain because of the limited number of selectable markers available in D. vulgaris. To broaden the repertoire of genetic tools for manipulation, an in-frame, markerless deletion system has been developed. The counterselectable marker that makes this deletion system possible is the pyrimidine salvage enzyme, uracil phosphoribosyltransferase, encoded by upp. In wild-type D. vulgaris, growth was shown to bemore » inhibited by the toxic pyrimidine analog 5-fluorouracil (5-FU); whereas, a mutant bearing a deletion of the upp gene was resistant to 5-FU. When a plasmid containing the wild-type upp gene expressed constitutively from the aph(3')-II promoter (promoter for the kanamycin resistance gene in Tn5) was introduced into the upp deletion strain, sensitivity to 5-FU was restored. This observation allowed us to develop a two-step integration and excision strategy for the deletion of genes of interest. Since this inframe deletion strategy does not retain an antibiotic cassette, multiple deletions can be generated in a single strain without the accumulation of genes conferring antibiotic resistances. We used this strategy to generate a deletion strain lacking the endonuclease (hsdR, DVU1703) of a type I restriction-modification system, that we designated JW7035. The transformation efficiency of the JW7035 strain was found to be 100 to 1000 times greater than that of the wild-type strain when stable plasmids were introduced via electroporation.« less
  • Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0±0.01 lmol per day for the co-culture and 10.1±0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8±0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0±0.5 x 107 cells per lmol Cl{supmore » -} released, compared with 6.8±0.9x 107 cells per lmol Cl{sup -} released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3±1.8x 107 cells per lmol Cl{sup -} released). The transcriptome of DE195 grown in the co-culture was analyzed using a whole-genome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.« less
  • Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0 0.01 lmol per day for the co-culture and 10.1 0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8 0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0 0.5107 cells permore » lmol Cl released, compared with 6.8 0.9107 cells per lmol Cl released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3 1.8107 cells per lmol Cl released). The transcriptome of DE195 grown in the co-culture was analyzed using a wholegenome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.« less
  • Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0 0.01 lmol per day for the co-culture and 10.1 0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8 0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0 0.5107 cells permore » lmol Cl released, compared with 6.8 0.9107 cells per lmol Cl released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3 1.8107 cells per lmol Cl released). The transcriptome of DE195 grown in the co-culture was analyzed using a wholegenome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.« less