skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Recognition and respect of cultural differences in the development and delivery of safety training for the non-English speaking worker.


No abstract prepared.

Publication Date:
Research Org.:
Sandia National Laboratories
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
TRN: US200719%%500
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the UNM, Tenth Annual College of Education Graduate Student Colloquium held February 22, 2007 in Albuquerque, NM.
Country of Publication:
United States

Citation Formats

Amezcua, Luis. Recognition and respect of cultural differences in the development and delivery of safety training for the non-English speaking worker.. United States: N. p., 2007. Web.
Amezcua, Luis. Recognition and respect of cultural differences in the development and delivery of safety training for the non-English speaking worker.. United States.
Amezcua, Luis. Thu . "Recognition and respect of cultural differences in the development and delivery of safety training for the non-English speaking worker.". United States. doi:.
title = {Recognition and respect of cultural differences in the development and delivery of safety training for the non-English speaking worker.},
author = {Amezcua, Luis},
abstractNote = {No abstract prepared.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • On September 11, 2001, the terrorist attacks on the World Trade Center (WTC) caused astronomical loss of life and property. Systems in place to manage disaster response were strained to the limit because key first responders were among the casualties when the twin towers collapsed. In addition, the evolution of events required immediate response in a rapidly changing and extremely hazardous situation. Rescue, recovery, and clean up became an overpowering and sustained effort that would utilize the resources of federal, state and local governments and agencies. One issue during the response to the WTC disaster site that did not receivemore » much attention was that of the limited and non-English speaking worker. The Operating Engineers National HAZMAT Program (OENHP), with its history of a Hispanic Outreach Program, was acutely aware of this issue with the Hispanic worker. The Hispanic population comprises approximately 27% of the population of New York City (1). The extremely unfortunate and tragic events of that day provided an opportunity to not only provide assistance for the Hispanic workers, but also to apply lessons learned and conduct studies on worker training with language barriers in a real life environment. However, due to the circumstances surrounding this tragedy, the study of these issues was conducted primarily by observation. Through partnerships with other organizations such as the Occupational Safety and Health Administration (OSHA), the New York Health Department, the New York Department of Design and Construction (DDC), the New York Committee for Occupational Safety and Health (NYCOSH), and private companies such as 3M and MSA, OENHP was able to provide translated information on hazards, protective measures, fit testing of respirators, and site specific safety and health training. The OENHP translated materials on hazards and how to protect workers into Spanish to assist in getting the information to the limited and non- English speaking workers.« less
  • Prior to the implementation of the DOE Rad Con Manual, Kaiser Engineers Hanford offered a four hour radiation worker class, which met all DOE 5480.11 requirements. This class included a dress/undress exercise. The content of the class was focused on the construction worker who is our typical radiation worker. We did not go into depth on the theory material, having a general feeling that this would not be essential information to the typical construction worker. We tried to gear the class to the level of understanding of the average craft worker. We provide training to 500 employees in the averagemore » year.« less
  • The intent of this paper is to demonstrate an electrical safety program that incorporates all workers into the program, not just the electrical workers. It is largely in response to a paper presented at the 2012 ESW by Lanny Floyd entitled "Facilitating Application of Electrical Safety Best Practices to "Other" Workers" which requested all attendees to review their electrical safety program to assure that non-electrical workers were protected as well as electrical workers. The referenced paper indicated that roughly 50% of electrical incidents involve workers whose primary function is not electrical in nature. It also encouraged all to "address electricalmore » safety for all workers and not just workers whose job responsibilities involve working on or near energized electrical circuits." In this paper, a program which includes specific briefings to non-electrical workers as well as to workers who may need to perform their normal activities in proximity to energized electrical conductors is presented. The program uses a targeted approach to specific areas such as welding, excavating, rigging, chart reading, switching, cord and plug equipment and several other general areas to point out hazards that may exist and how to avoid them. NFPA 70E-2004 was incorporated into the program several years ago and with it the need to include the "other" workers became apparent. The site experience over the years supports the assertion that about half of the electrical incidents involve non-electrical workers and this prompted us to develop specific briefings to enhance the knowledge of the non-electrical worker regarding safe electrical practices. The promotion of "May is Electrical Safety Month" and the development of informative presentations which are delivered to the general site population as well as electrical workers have greatly improved the hazards awareness status of the general worker on site.« less
  • Westinghouse Hanford Company (WHC) has developed Computer Based Training (CBT) materials for radiation and industrial safety. First released for general Fast Flux Test Facility in November, 1984. This course has now been taken by nearly 350 people. Completion times for new personnel average around eight hours. The next project undertaken was construction of a Radiation Worker Safety course generic enough for use by all contractors at the Hanford site. The design process of the Hanford site course indicated that the quantity of ''DOE common material'' may be sufficient to warrant consideration of a larger target population. Specifically, the course willmore » be designed to run on an IBM-PC or compatible computer having 256K RAM, a standard IBM color graphics card or equivalent, a color graphics monitor, and two floppy disk drives or one hard disk. The target student population includes those who routinely work in Radiation Areas, especially crafts people. We are not targeting Health Physics personnel, except, possibly, for introductory training, nor are we directing the course toward ''casual'' or escorted workers.« less
  • In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safetymore » engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.« less