skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Operational characteristics and analysis of the immersed-Bz diode on RITS-3.

Technical Report ·
DOI:https://doi.org/10.2172/903151· OSTI ID:903151

The immersed-B{sub z} diode is being developed as a high-brightness, flash x-ray radiography source. This diode is a foil-less electron-beam diode with a long, thin, needle-like cathode inserted into the bore of a solenoid. The solenoidal magnetic field guides the electron beam emitted from the cathode to the anode while maintaining a small beam radius. The electron beam strikes a thin, high-atomic-number anode and produces bremsstrahlung. We report on an extensive series of experiments where an immersed-B{sub z} diode was fielded on the RITS-3 pulsed power accelerator, a 3-cell inductive voltage generator that produced peak voltages between 4 and 5 MV, {approx}140 kA of total current, and power pulse widths of {approx}50 ns. The diode is a high impedance device that, for these parameters, nominally conducts {approx}30 kA of electron beam current. Diode operating characteristics are presented and two broadly characterized operating regimes are identified: a nominal operating regime where the total diode current is characterized as classically bipolar and an anomalous impedance collapse regime where the total diode current is in excess of the bipolar limit and up to the full accelerator current. The operating regimes are approximately separated by cathode diameters greater than {approx}3 mm for the nominal regime and less than {approx} 3 mm for the anomalous impedance collapse regime. This report represents a compilation of data taken on RITS-3. Results from key parameter variations are presented in the main body of the report and include cathode diameter, anode-cathode gap, and anode material. Results from supporting parameter variations are presented in the appendices and include magnetic field strength, prepulse, pressure and accelerator variations.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
903151
Report Number(s):
SAND2007-0358; TRN: US0703233
Country of Publication:
United States
Language:
English