skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen. A Tautomer Generator Program

Abstract

Many computational methods have been derived from quantum mechanics for molecular and extended systems. We advocate that these methods will soon become indispensable research tools of combinatorial chemistry. Although applications of these combinatorial methods driven by quantum-mechanics-derived computational engines seem to be distant, our recent experience suggests the opposite. We developed algorithms and codes to search for the most stable tautomers of molecules. In our approach, we: (i) create large libraries of molecular tautomers using combinatorial methods, and (ii) prescreen these libraries using quantum chemical electronic structure methods. We have identified many adiabatically bound and previously unknown tautomers of anionic nucleic acid bases. Our results unraveled that ordering of nucleic acid bases according to their affinity to an excess electron is: G > U > T > C > A , when all biologically relevant tautomers are considered. Acknowledgements This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.) and (ii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-4 (M.H.). M.H. thanks for financial support from the European Union Social Funds ZPORR/2.22/II/2.6/ARP/U/2/O5. M.H. is a holder of the award from the Fundation for Polish Science (FNP). R.A.B. acknowledgesmore » the financial support from Nanoquant EC Marie Curie Research Training Network, contract number: MRTN-506842. Computing resources were available through: (i) the Academic Computer Center in Gdansk (TASK) (ii) a Computational Grand Challenge Application grant from the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory located at the Pacific Northwest National Laboratory, and (iii) the National Energy Research Scientific Computing Center (NERSC). The MSCF is funded by DOE’s Office of Biological and Environmental Research. PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830.« less

Authors:
;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
902951
Report Number(s):
PNNL-SA-50679
3565; KC0302010; TRN: US200719%%85
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Information and Modeling, 47(2):686-694; Journal Volume: 47; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; ALGORITHMS; ELECTRONIC STRUCTURE; NUCLEIC ACIDS; QUANTUM MECHANICS; ISOMERS; Environmental Molecular Sciences Laboratory

Citation Formats

Haranczyk, Maciej, and Gutowski, Maciej S. Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen. A Tautomer Generator Program. United States: N. p., 2007. Web. doi:10.1021/ci6002703.
Haranczyk, Maciej, & Gutowski, Maciej S. Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen. A Tautomer Generator Program. United States. doi:10.1021/ci6002703.
Haranczyk, Maciej, and Gutowski, Maciej S. Thu . "Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen. A Tautomer Generator Program". United States. doi:10.1021/ci6002703.
@article{osti_902951,
title = {Quantum Mechanical Energy-based Screening of Combinatorially Generated Library of Tautomers. TauTGen. A Tautomer Generator Program},
author = {Haranczyk, Maciej and Gutowski, Maciej S},
abstractNote = {Many computational methods have been derived from quantum mechanics for molecular and extended systems. We advocate that these methods will soon become indispensable research tools of combinatorial chemistry. Although applications of these combinatorial methods driven by quantum-mechanics-derived computational engines seem to be distant, our recent experience suggests the opposite. We developed algorithms and codes to search for the most stable tautomers of molecules. In our approach, we: (i) create large libraries of molecular tautomers using combinatorial methods, and (ii) prescreen these libraries using quantum chemical electronic structure methods. We have identified many adiabatically bound and previously unknown tautomers of anionic nucleic acid bases. Our results unraveled that ordering of nucleic acid bases according to their affinity to an excess electron is: G > U > T > C > A , when all biologically relevant tautomers are considered. Acknowledgements This work was supported by the: (i) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.) and (ii) Polish State Committee for Scientific Research (KBN) Grant DS/8221-4-0140-4 (M.H.). M.H. thanks for financial support from the European Union Social Funds ZPORR/2.22/II/2.6/ARP/U/2/O5. M.H. is a holder of the award from the Fundation for Polish Science (FNP). R.A.B. acknowledges the financial support from Nanoquant EC Marie Curie Research Training Network, contract number: MRTN-506842. Computing resources were available through: (i) the Academic Computer Center in Gdansk (TASK) (ii) a Computational Grand Challenge Application grant from the Molecular Sciences Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory located at the Pacific Northwest National Laboratory, and (iii) the National Energy Research Scientific Computing Center (NERSC). The MSCF is funded by DOE’s Office of Biological and Environmental Research. PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830.},
doi = {10.1021/ci6002703},
journal = {Journal of Chemical Information and Modeling, 47(2):686-694},
number = 2,
volume = 47,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}
  • The authors describe here the construction and initial characterization of a 3-fold coverage genomic library of the human haploid genome that was prepared using the bacteriophase P1 cloning system. The cloned DNA inserts were produced by size fractionation of a Sau3AI partial digest of high molecular weight genomic DNA isolated from primary cells of human foreskin fibroblasts. The inserts were cloned into the pAd10sacBII vector and packaged in vitro into P1 phage. These were used to generate recombinant bacterial clones, each of which was picked robotically from an agar plate into a well of a 96-well microtiter dish, grown overnight,more » and stored at -70{degrees}C. The resulting library, designated DMPC-HFF No. 1 series A, consists of {approximately}130,000-140,000 recombinant clones that were stored in 1500 microtiter dishes. To screen the library, clones were combined in a pooling strategy and specific loci were identified by PCR analysis. On average, the library contains two or three different clones for each locus screened. To date the authors have identified a total of 17 clones containing the hypoxanthine-guanine phosphoribosyltransferase, human serum albumin-human {alpha}-fetoprotein, p53, cyclooxygenase I, human apurinic endonuclease, {beta}-polymerase, and DNA ligase I genes. The cloned inserts average 80 kb in size and range from 70 to 95 kb, with one 49-kb insert and one 62-kb insert. 19 refs., 3 figs., 1 tab.« less
  • Fragment-based NMR screening, X-ray crystallography, structure-based design, and focused chemical library design were used to identify novel inhibitors for BACE-1. A rapid optimization of an initial NMR hit was achieved by a combination of NMR and a functional assay, resulting in the identification of an isothiourea hit with a K{sub d} of 15 {micro}M for BACE-1. NMR data and the crystal structure revealed that this hit makes H-bond interactions with the two catalytic aspartates, occupies the nonprime side region of the active site of BACE-1, and extends toward the S3 subpocket (S3sp). A focused NMR-based search for heterocyclic isothiourea isosteresmore » resulted in several distinct classes of BACE-1 active site directed compounds with improved chemical stability and physicochemical properties. The strategy for optimization of the 2-aminopyridine lead series to potent inhibitors of BACE-1 was demonstrated. The structure-based design of a cyclic acylguanidine lead series and its optimization into nanomolar BACE-1 inhibitors are the subject of the companion paper (J. Med. Chem. 2010, 53, DOI:10.1021/jm901408p).« less
  • Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosenmore » for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed.« less
  • Very accurate variational nonrelativistic finite-nuclear-mass calculations employing all-electron explicitly correlated Gaussian basis functions are carried out for six Rydberg {sup 2}D states (1s{sup 2}nd, n= 6, Horizontal-Ellipsis , 11) of the {sup 7}Li and {sup 6}Li isotopes. The exponential parameters of the Gaussian functions are optimized using the variational method with the aid of the analytical energy gradient determined with respect to these parameters. The experimental results for the lower states (n= 3, Horizontal-Ellipsis , 6) and the calculated results for the higher states (n= 7, Horizontal-Ellipsis , 11) fitted with quantum-defect-like formulas are used to predict the energies ofmore » {sup 2}D 1s{sup 2}nd states for {sup 7}Li and {sup 6}Li with n up to 30.« less