skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial light modulator array with heat minimization and image enhancement features

Abstract

An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

Inventors:
 [1];  [2];  [3]
  1. Briarcliff Manor, NY
  2. Albuquerque, NM
  3. New Rochelle, NY
Publication Date:
Research Org.:
Sandia National Laboratories (SNL-NM), Albuquerque, NM
Sponsoring Org.:
USDOE
OSTI Identifier:
902915
Patent Number(s):
7,170,669
Application Number:
11/237,382
Assignee:
Anvik Corporation (Hawthorne, NY); Sandia Corporation (Albuquerque, NM) SNL-A
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Jain, Kanti, Sweatt, William C, and Zemel, Marc. Spatial light modulator array with heat minimization and image enhancement features. United States: N. p., 2007. Web.
Jain, Kanti, Sweatt, William C, & Zemel, Marc. Spatial light modulator array with heat minimization and image enhancement features. United States.
Jain, Kanti, Sweatt, William C, and Zemel, Marc. Tue . "Spatial light modulator array with heat minimization and image enhancement features". United States. doi:. https://www.osti.gov/servlets/purl/902915.
@article{osti_902915,
title = {Spatial light modulator array with heat minimization and image enhancement features},
author = {Jain, Kanti and Sweatt, William C and Zemel, Marc},
abstractNote = {An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 30 00:00:00 EST 2007},
month = {Tue Jan 30 00:00:00 EST 2007}
}

Patent:

Save / Share:
  • A reflective coherent spatial light modulator (RCSLM) includes a subwavelength resonant grating structure (SWS), the SWS including at least one subwavelength resonant grating layer (SWL) have a plurality of areas defining a plurality of pixels. Each pixel represents an area capable of individual control of its reflective response. A structure for modulating the resonant reflective response of at least one pixel is provided. The structure for modulating can include at least one electro-optic layer in optical contact with the SWS. The RCSLM is scalable in both pixel size and wavelength. A method for forming a RCSLM includes the steps ofmore » selecting a waveguide material and forming a SWS in the waveguide material, the SWS formed from at least one SWL, the SWL having a plurality of areas defining a plurality of pixels.« less
  • A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across themore » upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.« less
  • The heart of the National Ignition Facility is a megajoule-class laser system consisting of 192 beams used to drive inertial confinement fusion reactions. A recently installed system of programmable, liquid-crystal-based spatial light modulators adds the capability of arbitrarily shaping the spatial beam profiles in order to enhance operational flexibility. Its primary intended use is for introducing 'blocker' obscurations shadowing isolated flaws on downstream optical elements that would otherwise be damaged by high fluence laser illumination. Because an improperly shaped blocker pattern can lead to equipment damage, both the position and shape of the obscurations must be carefully verified prior tomore » high-fluence operations. An automatic alignment algorithm is used to perform detection and estimation of the imposed blocker centroid positions compared to their intended locations. Furthermore, in order to minimize the spatially-varying nonlinear response of the device, a calibration of the local magnification is performed at multiple sub-image locations. In this paper, we describe the control and associated image processing of this device that helps to enhance the safety and longevity of the overall system.« less