skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Keeping an Eye on the Prize

Abstract

Setting performance goals is part of the business plan for almost every company. The same is true in the world of supercomputers. Ten years ago, the Department of Energy (DOE) launched the Accelerated Strategic Computing Initiative (ASCI) to help ensure the safety and reliability of the nation's nuclear weapons stockpile without nuclear testing. ASCI, which is now called the Advanced Simulation and Computing (ASC) Program and is managed by DOE's National Nuclear Security Administration (NNSA), set an initial 10-year goal to obtain computers that could process up to 100 trillion floating-point operations per second (teraflops). Many computer experts thought the goal was overly ambitious, but the program's results have proved them wrong. Last November, a Livermore-IBM team received the 2005 Gordon Bell Prize for achieving more than 100 teraflops while modeling the pressure-induced solidification of molten metal. The prestigious prize, which is named for a founding father of supercomputing, is awarded each year at the Supercomputing Conference to innovators who advance high-performance computing. Recipients for the 2005 prize included six Livermore scientists--physicists Fred Streitz, James Glosli, and Mehul Patel and computer scientists Bor Chan, Robert Yates, and Bronis de Supinski--as well as IBM researchers James Sexton and John Gunnels. Thismore » team produced the first atomic-scale model of metal solidification from the liquid phase with results that were independent of system size. The record-setting calculation used Livermore's domain decomposition molecular-dynamics (ddcMD) code running on BlueGene/L, a supercomputer developed by IBM in partnership with the ASC Program. BlueGene/L reached 280.6 teraflops on the Linpack benchmark, the industry standard used to measure computing speed. As a result, it ranks first on the list of Top500 Supercomputer Sites released in November 2005. To evaluate the performance of nuclear weapons systems, scientists must understand how materials behave under extreme conditions. Because experiments at high pressures and temperatures are often difficult or impossible to conduct, scientists rely on computer models that have been validated with obtainable data. Of particular interest to weapons scientists is the solidification of metals. ''To predict the performance of aging nuclear weapons, we need detailed information on a material's phase transitions'', says Streitz, who leads the Livermore-IBM team. For example, scientists want to know what happens to a metal as it changes from molten liquid to a solid and how that transition affects the material's characteristics, such as its strength.« less

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
902885
Report Number(s):
UCRL-TR-227894
TRN: US200720%%327
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; AGING; BUSINESS; COMPUTERS; NUCLEAR WEAPONS; PERFORMANCE; RELIABILITY; SAFETY; SECURITY; SIMULATION; SOLIDIFICATION; STOCKPILES; SUPERCOMPUTERS; TESTING; VELOCITY; WEAPONS

Citation Formats

Hazi, A U. Keeping an Eye on the Prize. United States: N. p., 2007. Web. doi:10.2172/902885.
Hazi, A U. Keeping an Eye on the Prize. United States. doi:10.2172/902885.
Hazi, A U. Tue . "Keeping an Eye on the Prize". United States. doi:10.2172/902885. https://www.osti.gov/servlets/purl/902885.
@article{osti_902885,
title = {Keeping an Eye on the Prize},
author = {Hazi, A U},
abstractNote = {Setting performance goals is part of the business plan for almost every company. The same is true in the world of supercomputers. Ten years ago, the Department of Energy (DOE) launched the Accelerated Strategic Computing Initiative (ASCI) to help ensure the safety and reliability of the nation's nuclear weapons stockpile without nuclear testing. ASCI, which is now called the Advanced Simulation and Computing (ASC) Program and is managed by DOE's National Nuclear Security Administration (NNSA), set an initial 10-year goal to obtain computers that could process up to 100 trillion floating-point operations per second (teraflops). Many computer experts thought the goal was overly ambitious, but the program's results have proved them wrong. Last November, a Livermore-IBM team received the 2005 Gordon Bell Prize for achieving more than 100 teraflops while modeling the pressure-induced solidification of molten metal. The prestigious prize, which is named for a founding father of supercomputing, is awarded each year at the Supercomputing Conference to innovators who advance high-performance computing. Recipients for the 2005 prize included six Livermore scientists--physicists Fred Streitz, James Glosli, and Mehul Patel and computer scientists Bor Chan, Robert Yates, and Bronis de Supinski--as well as IBM researchers James Sexton and John Gunnels. This team produced the first atomic-scale model of metal solidification from the liquid phase with results that were independent of system size. The record-setting calculation used Livermore's domain decomposition molecular-dynamics (ddcMD) code running on BlueGene/L, a supercomputer developed by IBM in partnership with the ASC Program. BlueGene/L reached 280.6 teraflops on the Linpack benchmark, the industry standard used to measure computing speed. As a result, it ranks first on the list of Top500 Supercomputer Sites released in November 2005. To evaluate the performance of nuclear weapons systems, scientists must understand how materials behave under extreme conditions. Because experiments at high pressures and temperatures are often difficult or impossible to conduct, scientists rely on computer models that have been validated with obtainable data. Of particular interest to weapons scientists is the solidification of metals. ''To predict the performance of aging nuclear weapons, we need detailed information on a material's phase transitions'', says Streitz, who leads the Livermore-IBM team. For example, scientists want to know what happens to a metal as it changes from molten liquid to a solid and how that transition affects the material's characteristics, such as its strength.},
doi = {10.2172/902885},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 06 00:00:00 EST 2007},
month = {Tue Feb 06 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • Final information about the MIT Clean Energy Competition Submissions
  • The MIT Clean Energy Prize was established to accelerate the pace of innovation in the energy space, specifically with regard to clean energy and to reduce our dependence on foreign oil. Through a prize structure designed to incent new ideas to be brought forward coupled with a supporting infrastructure to educate, mentor, network and provide a platform for visibility, it was believed we could achieve this goal in a very efficient and effective manner. The grand prize of $200K was meant to be the highly visible and attractive carrot to achieve this and through a public-private partnership of sponsors whomore » held a long term view (i.e., they were not Venture Capitalists or law firms looking for short term business through advantaged deal flow). It was also designed to achieve this in a highly inclusive manner. Towards this end, while MIT was the platform on which the competition was run, and this brought some instant cache and differentiation, the competition was open to all teams which had at least one US citizen. Both professional teams and student teams were eligible.« less
  • The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educationalmore » process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.« less
  • Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less