skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry

Abstract

Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.

Authors:
; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
902661
Report Number(s):
PNNL-SA-51865
20496; 400412000
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Analytical Chemistry, 79(6):2451-2462; Journal Volume: 79; Journal Issue: 6
Country of Publication:
United States
Language:
English
Subject:
Electrospray ionization, multiplexing, ion mobility spectrometry, time-of-flight mass spectrometry; Environmental Molecular Sciences Laboratory

Citation Formats

Belov, Mikhail E., Buschbach, Michael A., Prior, David C., Tang, Keqi, and Smith, Richard D. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry. United States: N. p., 2007. Web. doi:10.1021/ac0617316.
Belov, Mikhail E., Buschbach, Michael A., Prior, David C., Tang, Keqi, & Smith, Richard D. Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry. United States. doi:10.1021/ac0617316.
Belov, Mikhail E., Buschbach, Michael A., Prior, David C., Tang, Keqi, and Smith, Richard D. Thu . "Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry". United States. doi:10.1021/ac0617316.
@article{osti_902661,
title = {Multiplexed Ion Mobility Spectrometry - Orthogonal Time-Of-Flight Mass Spectrometry},
author = {Belov, Mikhail E. and Buschbach, Michael A. and Prior, David C. and Tang, Keqi and Smith, Richard D.},
abstractNote = {Ion mobility spectrometry (IMS) coupled to orthogonal time-of-flight mass spectrometry (TOF) has shown significant promise for the characterization of complex biological mixtures. The enormous complexity of biological samples (e.g. from proteomics) and the need for both biological and technical analysis replicates imposes major challenges for multidimensional separation platforms in regard to both sensitivity and sample throughput. A major potential attraction of the IMS-TOF MS platform is separation speeds exceeding that of conventional condensed-phase separations by orders of magnitude. Known limitations of the IMS-TOF MS platforms that presently mitigate this attraction include the need for extensive signal averaging due to factors that include significant ion losses in the IMS-TOF interface and an ion utilization efficiency of less than ~1% with continuous ion sources (e.g. ESI). We have developed a new multiplexed ESI-IMS-TOF mass spectrometer that enables lossless ion transmission through the IMS-TOF as well as a utilization efficiency of >50% for ions from the ESI source. Initial results with a mixture of peptides show a ~10-fold increase in signal-to-noise ratio with the multiplexed approach compared to a signal averaging approach, with no reduction in either IMS or TOF MS resolution.},
doi = {10.1021/ac0617316},
journal = {Analytical Chemistry, 79(6):2451-2462},
number = 6,
volume = 79,
place = {United States},
year = {Thu Mar 15 00:00:00 EDT 2007},
month = {Thu Mar 15 00:00:00 EDT 2007}
}
  • Ion Mobility Spectrometry–Time-of-Flight Mass Spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity high-throughput platform for e.g. proteomics applications. In this work, we have developed and integrated three advanced technologies, enabling (1) efficient ion accumulation in the ion funnel trap prior to IMS separation, (2) multiplexing (MP) of ion packet introduction into the IMS drift tube and (3) signal detection with an analog-to-digital converter (ADC), into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of e.g. blood plasma. To better address variable samplemore » complexity, we have additionally developed and rigorously evaluated a new dynamic MP approach that ensures correlation of the analyzer performance with an ion source function, and provides the improved dynamic range and sensitivity. The MP IMS-TOF MS instrument has been shown to reliably detect peptides at a concentration of 1 nM in a highly complex matrix, as well as to provide a four orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features yielded ~ 700 unique peptide identifications at a false discovery rate (FDR) of ~ 7.5 %. Accounting for IMS information gave rise to a projected FDR of ~ 4 %. Signal reproducibility was found to be greater than 80 %, while the variations in the number of unique peptide identifications were < 15 %. A single sample analysis was completed in 15 min, corresponding to approximately an order of magnitude improvement compared to a more conventional LC-MS approach.« less
  • The confidence in peptide (and protein) identifications with ion mobility spectrometry time-of-flight mass spectrometry (IMS-TOFMS) is expected to drastically improve with the addition of information from an efficient ion dissociation step prior to MS detection. High throughput IMS-TOFMS analysis imposes a strong need for multiplexed ion dissociation approaches where multiple precursor ions yield complex sets of fragment ions that are often intermingled with each other in both the drift time and m/z domains. We have developed and evaluated a novel approach for collision-induced dissociation (CID) with an IMS-TOFMS instrument. It has been shown that precursor ions activated inside an rf-devicemore » with an axial dc-electric field produce abundant fragment ions which are radially confined with the rf-field and collisionally cooled at an elevated pressure, resulting in high CID efficiencies comparable or higher than those measured in triple-quadrupole instruments We have also developed an algorithm for deconvoluting these complex multiplexed tandem MS spectra by clustering both the precursor and fragment ions into the matching drift time profiles and by effectively utilizing high mass measurement accuracy of the TOFMS. In a single IMS separation with a tryptic digest of bovine serum albumin (BSA), we have reliably identified 20 unique peptides using multiplexed CID approach downstream of the IMS separation. Peptides were identified based upon the correlation between the precursor and fragment drift time profiles and by matching the profile representative masses to those of in silico BSA tryptic peptides and their fragments. The false discovery rate (FDR) of peptide identifications from multiplexed MS/MS spectra was less than 1%.« less
  • We report on the performance of Structures for Lossless Ion Manipulation (SLIM) devices as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM device and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central ‘rung’ electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2-6 V) and RF amplitude (≥160 Vp-p at 750 kHz) resulted in the greatest ionmore » intensities. Close to ideal IMS resolving power was maintained over a range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning the RF on the rung electrodes and DC on the guard electrodes; however, both resolving power and ion transmission showed a dependence on these voltages and the best conditions for both were > 300 Vp-p RF (685 kHz) and 7-11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R~58), showing that the negative “racetrack” effect from turning around a corner can be successfully avoided, as well as the capability for essentially lossless ion transmission.« less
  • Cited by 30
  • A combined electrodynamic ion funnel and ion trap coupled to an orthogonal acceleration (oa)-time-of-flight mass spectrometer was developed and characterized. The ion trap was incorporated through the use of added terminal electrodynamic ion funnel electrodes enabling control over the axial dc gradient in the trap section. The ion trap operates efficiently at a pressure of ~1 Torr, and measurements indicate a maximum charge capacity of ~3 × 107 charges. An order of magnitude increase in sensitivity was observed in the analysis of low concentration peptides mixtures with orthogonal acceleration (oa)-time-of-flight mass spectrometry (oa-TOF MS) in the trapping mode as comparedmore » to the continuous regime. A signal increase in the trapping mode was accompanied by reduction in the chemical background, due to more efficient desolvation of, for example, solvent related clusters. Controlling the ion trap ejection time was found to result in efficient removal of singly charged species and improving signal-to-noise ratio (S/N) for the multiply charged analytes.« less