skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method of modifying a volume mesh using sheet extraction

Abstract

A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

Inventors:
 [1];  [1]
  1. Albuquerque, NM
Publication Date:
Research Org.:
Sandia National Laboratories (SNL-NM), Albuquerque, NM
Sponsoring Org.:
USDOE
OSTI Identifier:
902649
Patent Number(s):
7,181,377
Application Number:
10/601,370
Assignee:
Sandia Corporation (Albuquerque, NM) SNL-A
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Borden, Michael J, and Shepherd, Jason F. Method of modifying a volume mesh using sheet extraction. United States: N. p., 2007. Web.
Borden, Michael J, & Shepherd, Jason F. Method of modifying a volume mesh using sheet extraction. United States.
Borden, Michael J, and Shepherd, Jason F. Tue . "Method of modifying a volume mesh using sheet extraction". United States. doi:. https://www.osti.gov/servlets/purl/902649.
@article{osti_902649,
title = {Method of modifying a volume mesh using sheet extraction},
author = {Borden, Michael J and Shepherd, Jason F},
abstractNote = {A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 20 00:00:00 EST 2007},
month = {Tue Feb 20 00:00:00 EST 2007}
}

Patent:

Save / Share:
  • A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may bemore » followed to modify a volume mesh.« less
  • A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferredmore » microbial species; and introducing the nutrient into the oil extraction environment.« less
  • The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energymore » efficient manner.« less
  • A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.