skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Organic materials and devices for detecting ionizing radiation

Abstract

A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

Inventors:
 [1];  [1]
  1. Livermore, CA
Publication Date:
Research Org.:
Sandia National Laboratories (SNL-CA), Livermore, CA
Sponsoring Org.:
USDOE
OSTI Identifier:
902637
Patent Number(s):
7,186,987
Application Number:
09/863,128
Assignee:
Sandia National Laboratories (Livermore, CA) SNL-L
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Doty, F Patrick, and Chinn, Douglas A. Organic materials and devices for detecting ionizing radiation. United States: N. p., 2007. Web.
Doty, F Patrick, & Chinn, Douglas A. Organic materials and devices for detecting ionizing radiation. United States.
Doty, F Patrick, and Chinn, Douglas A. Tue . "Organic materials and devices for detecting ionizing radiation". United States. doi:. https://www.osti.gov/servlets/purl/902637.
@article{osti_902637,
title = {Organic materials and devices for detecting ionizing radiation},
author = {Doty, F Patrick and Chinn, Douglas A},
abstractNote = {A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Mar 06 00:00:00 EST 2007},
month = {Tue Mar 06 00:00:00 EST 2007}
}

Patent:

Save / Share:
  • A radiation detecting arrangement for measuring or counting an ionizing radiation contains a compensating filter arrangement which safeguards a measurement of the radiation dose which is either independent of the energy, or independent of both the energy and the direction thereof. The compensating filter arrangement contains a supporting tube made from a slightly absorbing metal having an ordinal number not higher than about 35, which surrounds a tubular radiation detector and which, on its surface, carries several ring-shaped filter parts. These filter parts are made from one or more metal sleeves of a heavy metal or of a heavy metalmore » alloy slipped onto the supporting tube and soldered or cemented thereto. These filter parts, as regards position and shape, are manufactured by a metal-removing process with only the supporting tube being clamped by the metal-removing machine. In this way it is possible for the relatively soft-metallic filter parts to be worked on by a metal-removing machine without them having to be subjected to the chucking forces in the metal-cutting machine.« less
  • A fire and flame detecting apparatus using a GeigerMuller sensor is designed. The sensor is arranged in a circuit to produce a puisating signal when exposed to ionizing radiation, and the signal is fed to a switching circuit through two separate channels which are integrating or deiay networks with different delay degrees. The switching circuit delivers an output only receiving signals simultaneously from both channels. (D.L.C.)
  • A semiconductor body contains microscopic passages in which multiplication of the free electrons appearing at the entrances to said passages, under the effect of the incident ionizing radiation, takes place. A conductive film forms a surface barrier in conjunction with the semiconductor body which is endowed with the property of secondary emission with an emission coefficient better than unity.