skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements

Abstract

With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of casesmore » at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
The University Of Texas At Austin
Sponsoring Org.:
USDOE
OSTI Identifier:
902505
DOE Contract Number:
FC26-03NT15402
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
15 GEOTHERMAL ENERGY; ACCURACY; DIAGNOSIS; ENERGY BALANCE; FIBER OPTICS; FLOW RATE; FORECASTING; GEOTHERMAL GRADIENTS; MEASURING INSTRUMENTS; STIMULATION; TEMPERATURE MEASUREMENT; THERMODYNAMIC PROPERTIES; TRAJECTORIES; WATER

Citation Formats

Keita Yoshioka, Pinan Dawkrajai, Analis A. Romero, Ding Zhu, A. D. Hill, and Larry W. Lake. A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements. United States: N. p., 2007. Web. doi:10.2172/902505.
Keita Yoshioka, Pinan Dawkrajai, Analis A. Romero, Ding Zhu, A. D. Hill, & Larry W. Lake. A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements. United States. doi:10.2172/902505.
Keita Yoshioka, Pinan Dawkrajai, Analis A. Romero, Ding Zhu, A. D. Hill, and Larry W. Lake. Mon . "A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements". United States. doi:10.2172/902505. https://www.osti.gov/servlets/purl/902505.
@article{osti_902505,
title = {A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements},
author = {Keita Yoshioka and Pinan Dawkrajai and Analis A. Romero and Ding Zhu and A. D. Hill and Larry W. Lake},
abstractNote = {With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.},
doi = {10.2172/902505},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Jan 15 00:00:00 EST 2007},
month = {Mon Jan 15 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • In this project, we are developing new methods for interpreting measurements in complex wells (horizontal, multilateral and multi-branching wells) to determine the profiles of oil, gas, and water entry. These methods are needed to take full advantage of ''smart'' well instrumentation, a technology that is rapidly evolving to provide the ability to continuously and permanently monitor downhole temperature, pressure, volumetric flow rate, and perhaps other fluid flow properties at many locations along a wellbore; and hence, to control and optimize well performance. In this first year, we have made considerable progress in the development of the forward model of temperaturemore » and pressure behavior in complex wells. In this period, we have progressed on three major parts of the forward problem of predicting the temperature and pressure behavior in complex wells. These three parts are the temperature and pressure behaviors in the reservoir near the wellbore, in the wellbore or laterals in the producing intervals, and in the build sections connecting the laterals, respectively. Many models exist to predict pressure behavior in reservoirs and wells, but these are almost always isothermal models. To predict temperature behavior we derived general mass, momentum, and energy balance equations for these parts of the complex well system. Analytical solutions for the reservoir and wellbore parts for certain special conditions show the magnitude of thermal effects that could occur. Our preliminary sensitivity analyses show that thermal effects caused by near-wellbore reservoir flow can cause temperature changes that are measurable with smart well technology. This is encouraging for the further development of the inverse model.« less
  • This project is motivated by the increasing use of distributed temperature sensors for real-time monitoring of complex wells (horizontal, multilateral and multi-branching wells) to infer the profiles of oil, gas, and water entry. Measured information can be used to interpret flow profiles along the wellbore including junction and build section. In this second project year, we have completed a forward model to predict temperature and pressure profiles in complex wells. As a comprehensive temperature model, we have developed an analytical reservoir flow model which takes into account Joule-Thomson effects in the near well vicinity and multiphase non-isothermal producing wellbore model,more » and couples those models accounting mass and heat transfer between them. For further inferences such as water coning or gas evaporation, we will need a numerical non-isothermal reservoir simulator, and unlike existing (thermal recovery, geothermal) simulators, it should capture subtle temperature change occurring in a normal production. We will show the results from the analytical coupled model (analytical reservoir solution coupled with numerical multi-segment well model) to infer the anomalous temperature or pressure profiles under various conditions, and the preliminary results from the numerical coupled reservoir model which solves full matrix including wellbore grids. We applied Ramey's model to the build section and used an enthalpy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section.« less
  • Using a picosecond fluorimeter, the dynamics of solvation of electronically excited 4-aminophthalimide in a variety of solvents is measured. The solvation process is manifested by a time-dependent red shift in the emission spectrum in certain solvents. This red shift is time-resolved using a streak camera system. The time constant of the relaxation is found to correlate strongly with the longitudinal dielectric relaxation rate of the solvent. The correlation holds for changes in solvent, for isotopic substitution of a solvent, and for changes in temperature. Never before have direct measurements of excited-state solvation dynamics been shown to correlate with dielectric relaxationmore » over such a wide range of experimental conditions. Emission from certain photosynthetic antenna complexes, phycobilisomes, and from the building blocks of phycobilisomes, phycobiliproteins, has also been studied using the streak camera system. Both the rising and filling portions of the time-resolved emission profiles of the fluorescing chromophores in these structures are studied. The rates of energy transfer between structural domains of the antenna complex and within the isolated biliprotein complexes are deduced from these studies. Comparison of emission profiles from a series of structurally distinct phycobilisomes isolated from three related strains of cyanobacteria have provided new insights into the correlation of the energy transfer function and macromolecular structure in these light-harvesting antenna systems. 133 refs., 58 figs., 14 tabs.« less