skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review

Abstract

LLNL is a participant of California's Advanced Energy Pathways (AEP) team funded by DOE (NETL). At the AEP technical review meeting on November 9, 2006. The AB 1007 FFCA team (Appendix A) requested LLNL participate in a peer review of the FFCA reports. The primary contact at the CEC was McKinley Addy. The following reports/presentations were received by LLNL: (1) Full Fuel Cycle Energy and Emissions Assumptions dated September 2006, TIAX; (2) Full Fuel cycle Assessment-Well to Tank Energy Inputs, Emissions, and Water Impacts dated December 2006, TIAX; and (3) Full Fuel Cycle Analysis Assessment dated October 12, 2006, TIAX.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
902313
Report Number(s):
UCRL-TR-227813
TRN: US0702924
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILITZATION; FUEL CYCLE; LAWRENCE LIVERMORE NATIONAL LABORATORY; TANKS; WATER

Citation Formats

Rice, D, Armstrong, D, Campbell, C, Lamont, A, Gallegos, G, Stewart, J, and Upadhye, R. AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review. United States: N. p., 2007. Web. doi:10.2172/902313.
Rice, D, Armstrong, D, Campbell, C, Lamont, A, Gallegos, G, Stewart, J, & Upadhye, R. AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review. United States. doi:10.2172/902313.
Rice, D, Armstrong, D, Campbell, C, Lamont, A, Gallegos, G, Stewart, J, and Upadhye, R. Fri . "AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review". United States. doi:10.2172/902313. https://www.osti.gov/servlets/purl/902313.
@article{osti_902313,
title = {AB 1007 Full Fuel Cycle Analysis (FFCA) Peer Review},
author = {Rice, D and Armstrong, D and Campbell, C and Lamont, A and Gallegos, G and Stewart, J and Upadhye, R},
abstractNote = {LLNL is a participant of California's Advanced Energy Pathways (AEP) team funded by DOE (NETL). At the AEP technical review meeting on November 9, 2006. The AB 1007 FFCA team (Appendix A) requested LLNL participate in a peer review of the FFCA reports. The primary contact at the CEC was McKinley Addy. The following reports/presentations were received by LLNL: (1) Full Fuel Cycle Energy and Emissions Assumptions dated September 2006, TIAX; (2) Full Fuel cycle Assessment-Well to Tank Energy Inputs, Emissions, and Water Impacts dated December 2006, TIAX; and (3) Full Fuel Cycle Analysis Assessment dated October 12, 2006, TIAX.},
doi = {10.2172/902313},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2007},
month = {Fri Jan 19 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • This report compares the energy use, oil use and emissions of electric vehicles (EVs) with those of conventional, gasoline-powered vehicles (CVs) over the total life cycle of the vehicles. The various stages included in the vehicles` life cycles include vehicle manufacture, fuel production, and vehicle operation. Disposal is not included. An inventory of the air emissions associated with each stage of the life cycle is estimated. Water pollutants and solid wastes are reported for individual processes, but no comprehensive inventory is developed. Volume IV includes copies of all the external peer review comments on the report distributed for review inmore » July 1997.« less
  • This document summarizes the comments provided by the peer reviewers at the U.S. Department of Energy (DOE) Biomass Program’s Peer Review meeting, held on November 14-15, 2007 in Baltimore, MD and Platform Reviews conducted over the summer of 2007. The Platform Reviews provide evaluations of the Program’s projects in applied research, development, and demonstration.
  • The report provides a methodology for analyzing full fuel cycle emissions of alternative fuels for vehicles. Included in this analysis is an assessment of the following fuel cycles relevant to vehicle use: gasoline, reformulated gasoline, natural gas, liquefied petroleum gas, electric power (with onboard battery storage), ethanol, and methanol fuels. The analysis focuses on basic criteria pollutants (reactive organic gases, nitrous oxides, carbon monoxide, sulfurous oxides, and particulates less than 10 microns (PM10)). Emissions of greenhouse gases (carbon dioxide, methane, and nitrous oxide) are also defined. The analysis was conducted for two cases, United States and the State of Californiamore » and two time frames, current and year 2000.« less
  • Because of its abundance and because it offers significant energy and evironmental advantages, natural gas has been promoted for use in motor vehicles. A number of transportation fuels are produced from natural gas; each is distinct in terms of upstream production activities and vehicle usage. In this study, the authors avaluate eight fuels produced from natural gas - compressed natural gas, liquefied petroleum gas, methanol, hydrogen, dimethyl ether, Fischer-Tropsch diesel, and electricity--for use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. Because of great uncertainties associated with advances both inmore » fuel production and vehicle technologies, they evaluate near-term and long-term fuels and vehicle technologies separately. Furthermore, for long-term options, they establish both an incremental technology scenario and a leap-forward technology scenario to address potential technology improvements. The study reveals that, in general, the use of natural gas-based fuels reduces energy use and emissions relative to use of petroleum-based gasoline and diesel fuel, although different natural gas-based fuels in different vehicle technologies can have significantly different energy and emissions impacts.« less
  • The following is primarily a review of 'Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions,' Antoun, et al, published by Lawrence Livermore National Laboratory (LLNL) after SPE-1 in 2011 (Ref. 1). However, LLNL analysis of SPE-2 (Ref. 2) will also be discussed. A review by Los Alamos National Laboratory (LANL) personnel of Reference 1 finds both the evidence of the effects of joints on the data and the correlation of calculations with the data weak. This conclusion is made on three separate levels: (1) Fundamental observations made of the various referenced figures taken asmore » presented; (2) Observations made following corrections to errors and omissions to the selected data; and (3) Observations made after considering likely errors in the raw data set. The evidence presented in the referenced papers relies on subjective interpretation of various figures. This is the nature of this technical field of study and, indeed, much of our observation is also subjective.« less