skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic Transitions in f-electron Metals at High Pressures:

Abstract

This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: {approx}20% at the {delta}-{alpha} transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonancemore » inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP).« less

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
902239
Report Number(s):
UCRL-TR-228003
TRN: US0702914
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ADVANCED PHOTON SOURCE; CRYSTAL STRUCTURE; ELECTRON CORRELATION; ELECTRONIC STRUCTURE; EMISSION SPECTROSCOPY; MAGNETIC MOMENTS; PHYSICS; RESONANCE; STOCKPILES; SYNCHROTRONS; TRAINING; TRANSITION ELEMENTS; X-RAY SPECTROSCOPY

Citation Formats

Yoo, C, Maddox, B, Lazicki, A, Iota, V, Klepeis, J P, and McMahan, A. Electronic Transitions in f-electron Metals at High Pressures:. United States: N. p., 2007. Web. doi:10.2172/902239.
Yoo, C, Maddox, B, Lazicki, A, Iota, V, Klepeis, J P, & McMahan, A. Electronic Transitions in f-electron Metals at High Pressures:. United States. doi:10.2172/902239.
Yoo, C, Maddox, B, Lazicki, A, Iota, V, Klepeis, J P, and McMahan, A. Thu . "Electronic Transitions in f-electron Metals at High Pressures:". United States. doi:10.2172/902239. https://www.osti.gov/servlets/purl/902239.
@article{osti_902239,
title = {Electronic Transitions in f-electron Metals at High Pressures:},
author = {Yoo, C and Maddox, B and Lazicki, A and Iota, V and Klepeis, J P and McMahan, A},
abstractNote = {This study was to investigate unusual phase transitions driven by electron correlation effects that occur in many f-band transition metals and are often accompanied by large volume changes: {approx}20% at the {delta}-{alpha} transition in Pu and 5-15% for analogous transitions in Ce, Pr, and Gd. The exact nature of these transitions has not been well understood, including the short-range correlation effects themselves, their relation to long-range crystalline order, the possible existence of remnants of the transitions in the liquid, the role of magnetic moments and order, the critical behavior, and dynamics of the transitions, among other issues. Many of these questions represent forefront physics challenges central to Stockpile materials and are also important in understanding the high-pressure behavior of other f- and d-band transition metal compounds including 3d-magnetic transition monoxide (TMO, TM=Mn, Fe, Co, Ni). The overarching goal of this study was, therefore, to understand the relationships between crystal structure and electronic structure of transition metals at high pressures, by using the nation's brightest third-generation synchrotron x-ray at the Advanced Photon Source (APS). Significant progresses have been made, including new discoveries of the Mott transition in MnO at 105 GPa and Kondo-like 4f-electron dehybridization and new developments of high-pressure resonance inelastic x-ray spectroscopy and x-ray emission spectroscopy. These scientific discoveries and technology developments provide new insights and enabling tools to understand scientific challenges in stockpile materials. The project has broader impacts in training two SEGRF graduate students and developing an university collaboration (funded through SSAAP).},
doi = {10.2172/902239},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 08 00:00:00 EST 2007},
month = {Thu Feb 08 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • Unusual phase transitions driven by electron correlation effects occur in many f-electron metals (lanthanides and actinides alike) from localized phases to itinerant phases at high pressures. The dramatic changes in atomic volumes and crystal structures associated with some of these transitions signify equally important changes in the underlying electronic structure of these correlated f-electron metals. Yet, the relationships among the crystal structure, electronic correlation and electronic structure in f-electron metals have not been well understood. In this study, utilizing recent advances in third generation synchrotron x-ray spectroscopies and high-pressure diamond-anvil cell technologies, we describe the pressure-induced spectral changes across themore » volume collapse transition in Gd at 60 GPa and well above. The spectral results suggest that the f- electrons of high-pressure Gd phases are highly correlated even at 100 GPa - consistent with the Kondo volume collapse model and the recent experimental evidence of strong electron correlation of {alpha}-Ce.« less
  • Unusual phase transitions driven by electron correlation effects occur in many f- electron metals (lanthanides and actinides alike) from localized phases to itinerant phases at high pressures. The dramatic changes in atomic volumes and crystal structures associated with some of these transitions signify equally important changes in the underlying electronic structure of these correlated f-electron metals. Yet, the relationships among the crystal structure, electronic correlation and electronic structure in f-electron metals have not been well understood. In this study, utilizing recent advances in third generation synchrotron x-ray spectroscopies and high-pressure diamond-anvil cell technologies, we describe the pressure-induced spectral changes acrossmore » the volume collapse transition in Gd at 60 GPa and well above. The spectral results suggest that the f- electrons of high-pressure Gd phases are highly correlated even at 100 GPa - consistent with the Kondo volume collapse model and the recent experimental evidence of strong electron correlation of {alpha}-Ce. (authors)« less
  • Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less
  • Pressure is a powerful control parameter, owing to its ability to affect crystal and electronic structure without introducing defects, for the investigation of condensed matter systems. Some f-electron, heavy-fermion materials display interesting and novel behavior when exposed to pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require extreme conditions such as ultrahigh pressures, high magnetic fields, and ultralow temperatures to sufficiently explore the important properties. To that end, we have been funded to develop an ultrahigh pressure facility at the University of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquidmore » behavior, and other phenomena under extreme conditions. Our goals for the second year of this grant were as follows: (a) perform electrical resistivity measurements on novel samples at a myriad of pressures using conventional piston-cylinder techniques, Bridgman anvil techniques, and diamond anvil cell technology; (b) install, commission, and operate an Oxford Kelvinox MX-100 dilution refrigerator for access to ultralow temperatures and high magnetic fields. (c) continue the development of diamond anvil cell (DAC) technology. During the past year, we have successfully installed the Oxford Kelvinox MX-100 dilution refrigerator and verified its operability down to 12 mK. We have begun an experimental program to systematically investigate the f-electron compound URu2Si2 under pressure and in the presence of magnetic fields. We have also continued our collaborative work with Sam Weir at Lawrence Livermore National Laboratory (LLNL) on Au4V and implemented a new corollary study on Au1-xVx using ultrahigh pressures. We have continued developing our DAC facility by designing and constructing an apparatus for in situ pressure measurement as well as designing high pressure cells. This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less
  • This grant, entitled “Experimental investigation of magnetic, superconducting and other phase transitions in novel f-electron materials at ultrahigh pressures,” spanned the funding period from May 1st, 2003 until April 30th, 2006. The major goal of this grant was to develop and utilize an ultrahigh pressure facility—capable of achieving very low temperatures, high magnetic fields, and extreme pressures as well as providing electrical resistivity, ac susceptibility, and magnetization measurement capabilities under pressure—for the exploration of magnetic, electronic, and structural phases and any corresponding interactions between these states in novel f-electron materials. Realizing this goal required the acquisition, development, fabrication, and implementationmore » of essential equipment, apparatuses, and techniques. The following sections of this report detail the establishment of an ultrahigh pressure facility (Section 1) and measurements performed during the funding period (Section 2), as well as summarize the research project (Section 3), project participants and their levels of support (Section 4), and publications and presentations (Section 5).« less