skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)

Abstract

Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy asmore » T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
902199
Report Number(s):
FERMILAB-PUB-07-073-CD
arXiv eprint number astro-ph/0703369; TRN: US200717%%177
DOE Contract Number:
AC02-07CH11359
Resource Type:
Journal Article
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; COSMOLOGY; GALAXIES; GALAXY CLUSTERS; NONLUMINOUS MATTER; OCCUPATION NUMBER; UNIVERSE; Astrophysics

Citation Formats

Muzzin, Adam, Yee, H.K.C., /Toronto U., Astron. Dept., Hall, Patrick B., /York U., Canada, Lin, Huan, and /Fermilab. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M). United States: N. p., 2007. Web. doi:10.1086/518229.
Muzzin, Adam, Yee, H.K.C., /Toronto U., Astron. Dept., Hall, Patrick B., /York U., Canada, Lin, Huan, & /Fermilab. Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M). United States. doi:10.1086/518229.
Muzzin, Adam, Yee, H.K.C., /Toronto U., Astron. Dept., Hall, Patrick B., /York U., Canada, Lin, Huan, and /Fermilab. Thu . "Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)". United States. doi:10.1086/518229. https://www.osti.gov/servlets/purl/902199.
@article{osti_902199,
title = {Near-Infrared Properties of Moderate-Redshift Galaxy Clusters: Halo Occupation Number, Mass-to-Light Ratios and Omega(M)},
author = {Muzzin, Adam and Yee, H.K.C. and /Toronto U., Astron. Dept. and Hall, Patrick B. and /York U., Canada and Lin, Huan and /Fermilab},
abstractNote = {Using K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters we examine the near-infrared properties of moderate-redshift (0.19 < z < 0.55) galaxy clusters. We find that the number of K-band selected cluster galaxies within R{sub 500} (the Halo Occupation Number, HON) is well-correlated with the cluster dynamical mass (M{sub 500}) and X-ray Temperature (T{sub x}); however, the intrinsic scatter in these scaling relations is 37% and 46% respectively. Comparison with clusters in the local universe shows that the HON-M{sub 500} relation does not evolve significantly between z = 0 and z {approx} 0.3. This suggests that if dark matter halos are disrupted or undergo significant tidal-stripping in high-density regions as seen in numerical simulations, the stellar mass within the halos is tightly bound, and not removed during the process. The total K-band cluster light (L{sub 200},K) and K-band selected richness (parameterized by B{sub gc,K}) are also correlated with both the cluster T{sub x} and M{sub 200}. The total (intrinsic) scatter in the L{sub 200,K}-M{sub 200} and B{sub gc,K}-M{sub 200} relations are 43%(31%) and 35%(18%) respectively and indicates that for massive clusters both L{sub 200,K} and B{sub gc,K} can predict M{sub 200} with similar accuracy as T{sub x}, L{sub x} or optical richness (B{sub gc}). Examination of the mass-to-light ratios of the clusters shows that similar to local clusters, the K-band mass-to-light ratio is an increasing function of halo mass. Using the K-band mass-to-light ratios of the clusters, we apply the Oort technique and find {Omega}{sub m,0} = 0.22 {+-} 0.02, which agrees well with recent combined concordance cosmology parameters, but, similar to previous cluster studies, is on the low-density end of preferred values.},
doi = {10.1086/518229},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2007},
month = {Thu Mar 01 00:00:00 EST 2007}
}
  • We present K-band imaging for 15 of the Canadian Network for Observational Cosmology (CNOC1) clusters. The extensive spectroscopic dataset available for these clusters allows us to determine the cluster K-band luminosity function and density profile without the need for statistical background subtraction. The luminosity density and number density profiles can be described by NFW models with concentration parameters of c{sub l} = 4.28 {+-} 0.70 and c{sub g} = 4.13 {+-} 0.57 respectively. Comparing these to the dynamical mass analysis of the same clusters shows that the galaxy luminosity and number density profiles are similar to the dark matter profile,more » and are not less concentrated like in local clusters. The luminosity functions show that the evolution of K. over the redshift range 0.2 < z < 0.5 is consistent with a scenario where the majority of stars in cluster galaxies form at high-redshift (z{sub f} > 1.5) and evolve passively thereafter. The best-fit for the faint-end slope of the luminosity function is {alpha} = -0.84 {+-} 0.08, which indicates that it does not evolve between z = 0 and z = 0.3. Using Principal Component Analysis of the spectra we classify cluster galaxies as either star-forming/recently-star-forming (EM+BAL) or non-star forming (ELL) and compute their respective luminosity functions. The faint-end slope of the ELL luminosity function is much shallower than for the EM+BAL galaxies at z = 0.3, and suggests the number of faint ELL galaxies in clusters decreases by a factor of {approx} 3 from z = 0 to z = 0.3. The redshift evolution of K* for both EM+BAL and ELL types is consistent with a passively evolving stellar population formed at high-redshift. Passive evolution in both classes, as well as the total cluster luminosity function, demonstrates that the bulk of the stellar population in all bright cluster galaxies is formed at high-redshift and subsequent transformations in morphology/color/spectral-type have little effect on the total stellar mass.« less
  • We study the galaxy populations in 74 Sunyaev–Zeldovich effect selected clusters from the South Pole Telescope survey, which have been imaged in the science verification phase of the Dark Energy Survey. The sample extends up to z ~ 1.1 with 4 × 10 14 M⊙ ≤ M200 ≤ 3 × 10 15M⊙. Using the band containing the 4000 Å break and its redward neighbour, we study the colour–magnitude distributions of cluster galaxies to ~m* + 2, finding that: (1)The intrinsic rest frame g – r colour width of the red sequence (RS) population is ~0.03 out to z ~ 0.85 with a preference for an increase to ~0.07 at z = 1, and (2) the prominence of the RS declines beyond z ~ 0.6. The spatial distribution of cluster galaxies is well described by the NFW profile out to 4R200 with a concentration of c g = 3.59more » $$+0.20\atop{–0.18}$$, 5.37$$+0.27\atop{-0.24}$$ and 1.38$$+0.21\atop{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with ~40 per cent to 55 per cent cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region N200 exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The RS fraction within R200 is (68 ± 3) per cent at z = 0.46, varies from ~55 per cent at z = 1 to ~80 per cent at z = 0.1 and exhibits intrinsic variation among clusters of ~14 per cent. Finally, we discuss a model that suggests that the observed redshift trend in RS fraction favours a transformation time-scale for infalling field galaxies to become RS galaxies of 2–3 Gyr.« less
  • We study the galaxy populations in 74 Sunyaev Zeldovich Effect (SZE) selected clusters from the South Pole Telescope (SPT) survey that have been imaged in the science verification phase of the Dark Energy Survey (DES). The sample extends up tomore » $$z\sim 1.1$$ with $$4 \times 10^{14} M_{\odot}\le M_{200}\le 3\times 10^{15} M_{\odot}$$. Using the band containing the 4000~\AA\ break and its redward neighbor, we study the color-magnitude distributions of cluster galaxies to $$\sim m_*+2$$, finding: (1) the intrinsic rest frame $g-r$ color width of the red sequence (RS) population is $$\sim$$0.03 out to $$z\sim0.85$$ with a preference for an increase to $$\sim0.07$$ at $z=1$ and (2) the prominence of the RS declines beyond $$z\sim0.6$$. The spatial distribution of cluster galaxies is well described by the NFW profile out to $$4R_{200}$$ with a concentration of $$c_{\mathrm{g}} = 3.59^{+0.20}_{-0.18}$$, $$5.37^{+0.27}_{-0.24}$$ and $$1.38^{+0.21}_{-0.19}$$ for the full, the RS and the blue non-RS populations, respectively, but with $$\sim40$$\% to 55\% cluster to cluster variation and no statistically significant redshift or mass trends. The number of galaxies within the virial region $$N_{200}$$ exhibits a mass trend indicating that the number of galaxies per unit total mass is lower in the most massive clusters, and shows no significant redshift trend. The red sequence (RS) fraction within $$R_{200}$$ is $$(68\pm3)$$\% at $z=0.46$, varies from $$\sim$$55\% at $z=1$ to $$\sim$$80\% at $z=0.1$, and exhibits intrinsic variation among clusters of $$\sim14$$\%. We discuss a model that suggests the observed redshift trend in RS fraction favors a transformation timescale for infalling field galaxies to become RS galaxies of 2 to 3~Gyr.« less
  • We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allowsmore » us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the {<=}15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be {approx}35% to redshift z {approx} 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B{sub gc} and a red-sequence redshift estimator. We measure the intrinsic scatter of the B{sub gc}-mass relation to be approximately log normal with {sigma}{sub log10M}{approx}0.25 and we demonstrate photometric redshift accuracies for massive clusters at the {approx}3% level out to z {approx} 0.7.« less