skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular cytogenetic characterization of a human thyroid cancercell line

Abstract

The incidence of papillary thyroid carcinoma (PTC) increases significantly after exposure of the head and neck region to ionizing radiation, yet we know neither the steps involved in malignant transformation of thyroid epithelium nor the specific carcinogenic mode of action of radiation. Such increased tumor frequency became most evident in children after the 1986 nuclear accident in Chernobyl, Ukraine. In the twelve years following the accident, the average incidence of childhood PTCs (chPTC) increased over one hundred-fold compared to the rate of about 1 tumor incidence per 10{sup 6} children per year prior to 1986. To study the etiology of radiation-induced thyroid cancer, we formed an international consortium to investigate chromosomal changes and altered gene expression in cases of post-Chernobyl chPTC. Our approach is based on karyotyping of primary cultures established from chPTC specimens, establishment of cell lines and studies of genotype-phenotype relationships through high resolution chromosome analysis, DNA/cDNA micro-array studies, and mouse xenografts that test for tumorigenicity. Here, we report the application of fluorescence in situ hybridization (FISH)-based techniques for the molecular cytogenetic characterization of a highly tumorigenic chPTC cell line, S48TK, and its subclones. Using chromosome 9 rearrangements as an example, we describe a new approach termed ''BAC-FISH''more » to rapidly delineate chromosomal breakpoints, an important step towards a better understanding of the formation of translocations and their functional consequences.« less

Authors:
; ; ; ; ; ; ;
Publication Date:
Research Org.:
Ernest Orlando Lawrence Berkeley NationalLaboratory, Berkeley, CA (US)
Sponsoring Org.:
USDOE Director. Office of Science. Office of Health andEnvironmental Research; National Institutes of Health Grants CA88258 andHD44313 and HD45736; European /community Grant F14PCT95000IL
OSTI Identifier:
901816
Report Number(s):
LBNL-59747
R&D Project: L0130; BnR: 400412000; TRN: US200715%%154
DOE Contract Number:
DE-AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Cytogenetics and Genome Research; Journal Volume: 114; Related Information: Journal Publication Date: 2006
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; CARCINOMAS; CHILDREN; CHROMOSOMES; EPITHELIUM; ETIOLOGY; FLUORESCENCE; FUNCTIONALS; GENES; IN-SITU HYBRIDIZATION; IONIZING RADIATIONS; NEOPLASMS; RESOLUTION; THYROID; TRANSFORMATIONS; UKRAINE

Citation Formats

Weier, Heinz-Ulrich G., Tuton, Tiffany B., Ito, Yuko, Chu, LisaW., Lu, Chung-Mei, Baumgartner, Adolf, Zitzelsberger, Horst F., and Weier,Jingly F. Molecular cytogenetic characterization of a human thyroid cancercell line. United States: N. p., 2006. Web. doi:10.1159/000094215.
Weier, Heinz-Ulrich G., Tuton, Tiffany B., Ito, Yuko, Chu, LisaW., Lu, Chung-Mei, Baumgartner, Adolf, Zitzelsberger, Horst F., & Weier,Jingly F. Molecular cytogenetic characterization of a human thyroid cancercell line. United States. doi:10.1159/000094215.
Weier, Heinz-Ulrich G., Tuton, Tiffany B., Ito, Yuko, Chu, LisaW., Lu, Chung-Mei, Baumgartner, Adolf, Zitzelsberger, Horst F., and Weier,Jingly F. Wed . "Molecular cytogenetic characterization of a human thyroid cancercell line". United States. doi:10.1159/000094215. https://www.osti.gov/servlets/purl/901816.
@article{osti_901816,
title = {Molecular cytogenetic characterization of a human thyroid cancercell line},
author = {Weier, Heinz-Ulrich G. and Tuton, Tiffany B. and Ito, Yuko and Chu, LisaW. and Lu, Chung-Mei and Baumgartner, Adolf and Zitzelsberger, Horst F. and Weier,Jingly F.},
abstractNote = {The incidence of papillary thyroid carcinoma (PTC) increases significantly after exposure of the head and neck region to ionizing radiation, yet we know neither the steps involved in malignant transformation of thyroid epithelium nor the specific carcinogenic mode of action of radiation. Such increased tumor frequency became most evident in children after the 1986 nuclear accident in Chernobyl, Ukraine. In the twelve years following the accident, the average incidence of childhood PTCs (chPTC) increased over one hundred-fold compared to the rate of about 1 tumor incidence per 10{sup 6} children per year prior to 1986. To study the etiology of radiation-induced thyroid cancer, we formed an international consortium to investigate chromosomal changes and altered gene expression in cases of post-Chernobyl chPTC. Our approach is based on karyotyping of primary cultures established from chPTC specimens, establishment of cell lines and studies of genotype-phenotype relationships through high resolution chromosome analysis, DNA/cDNA micro-array studies, and mouse xenografts that test for tumorigenicity. Here, we report the application of fluorescence in situ hybridization (FISH)-based techniques for the molecular cytogenetic characterization of a highly tumorigenic chPTC cell line, S48TK, and its subclones. Using chromosome 9 rearrangements as an example, we describe a new approach termed ''BAC-FISH'' to rapidly delineate chromosomal breakpoints, an important step towards a better understanding of the formation of translocations and their functional consequences.},
doi = {10.1159/000094215},
journal = {Cytogenetics and Genome Research},
number = ,
volume = 114,
place = {United States},
year = {Wed Jan 04 00:00:00 EST 2006},
month = {Wed Jan 04 00:00:00 EST 2006}
}
  • Human/rodent somatic cell hybrids have been exceedingly useful in assigning human genes and DNA sequences to specific human chromosomes. As new technologies for analyzing the human chromosome complement of such human/rodent hybrid cells become available, it is of critical importance that these be applied to enhance characterization of existing hybrids. This is particularly important since human chromosomes in such hybrids have been observed to rearrange with time. We report here the use of fluorescence in situ hybridization of DNA probes to metaphase chromosomes to analyze one hybrid designated 72532X6. This analysis shows that the chromosome suspected to be a normalmore » human chromosome 21 in this hybrid is actually a translocation chromosome containing Yp and 21 q. In addition, the hybrid contains a fragment of human chromosome 9 translocated to a Chinese hamster chromosome. Analysis of the chromosomes from the human donor indicates that his chromosomes are normal. Thus, this translocation chromosome appears to have arisen after formation of the hybrid. 14 refs., 2 figs.« less
  • Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failedmore » to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.« less
  • A pericentric inversion of human X chromosome and a recombinant X chromosome (rec(X)) derived from crossing-over within the inversion was identified in a family. The rec(X) had a duplication of the segment Xq26.3 ..-->.. Xqter and a deletion of Xp22.3 ..-->.. Xpter and was interpreted to be Xqter ..-->.. Xq26.3::Xp22.3 ..-->.. Xqter. To characterize the rec(X) chromosome, dosage blots were done on genomic DNA from carriers of this rearranged X chromosome using a number of X chromosome probes. Results showed that anonymous sequences from the distal end of the long arm to which probes 4D8, Hx120A, DX13, and St14 bindmore » as well as the locus for glucose-6-phosphate dehydrogenase (G6PD) wee duplicated on the rec(X). Mouse-human cell hybrids were constructed that retained the rec(X) in the active or inactive state. Analyses of these hybrid clones for markers from the distal short arm of the X chromosome showed that the rec(X) retained the loci for steroid sulfatase (STS) and the cell surface antigen 12E7 (MIC2); but not the pseudoautosomal sequence 113D. These molecular studies confirm that the rec(X) is a duplication-deficiency chromosome as expected. In the inactive state in cell hybrids, STS and MIC2 (which usually escape X chromosome inactivation) were expressed from the rec(X), whereas G6PD was not. Therefore, in the rec(X) X chromosome inactivation has spread through STS and MIC2 leaving these loci unaffected and has inactivated G6PD in the absence of an inactivation center in the q26.3 ..-->.. qter region of the human X chromosome. The mechanism of spreading of inactivation appears to operate in a sequence-specific fashion. Alternatively, STS and MIC2 may have undergone inactivation initially but could not be maintained in an inactive state.« less
  • The authors have studied seven patients who have chromosome 22q13.3 deletions as revealed by high-resolution cytogenetic analysis. Clinical evaluation of the patients revealed a common phenotype that includes generalized developmental delay, normal or accelerated growth, hypotonia, severe delays in expressive speech, and mild facial dysmorphic features. Dosage analysis using a series of genetically mapped probes showed that the proximal breakpoints of the deletions varied over [approximately]13.8 cM, between loci D22S92 and D22S94. The most distally mapped locus, arylsulfatase A (ARSA), was deleted in all seven patients. Therefore, the smallest region of overlap (critical region) extends between locus D22S94 and amore » region distal to ARSA a distance of >25.5 cM. 38 rfs., 4 figs., 4 tabs.« less
  • We have studied the inverted duplicated chromosomes 15 (inv dup(15)) from 11 individuals - 7 with severe mental retardation and seizures, 3 with a normal phenotype, and 1 with Prader-Willi syndrome (PWS). Through a combination of FISH and quantitative DNA analyses, three different molecular sizes of inv dup(15) were identified. The smallest inv dup(15) was positive only for the centromeric locus D15Z1 (type 1); the next size was positive for D15Z1 and D15S18 (type 2); and the largest inv dup(15) was positive for two additional copies of loci extending from D15Z1 and D15S18 through D15S12 (type 3). Type 1 ormore » type 2 was observed in the three normal individuals and the PWS patient. Type 3 was observed in all seven individuals with mental retardation and seizures but without PWS or Angelman Syndrome (AS). The PWS patient, in addition to being mosaic for a small inv dup(15), demonstrated at D15S63 a methylation pattern consistent with material uniparental inheritance of the normal chromosomes 15. The results from this study show (a) two additional copies of proximal 15q loci, D15S9 through D15S12, in mentally retarded patients with an inv dup(15) but without AS or PWS and (b) no additional copies of these loci in patients with a normal phenotype or with PWS. 36 refs., 3 figs., 2 tabs.« less