skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA)

Abstract

A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for dispositioning excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s to support the Plutonium Immobilization Program (PIP). Further refinement of the vitrification process was accomplished as part of the Am/Cm solution vitrification project. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt% Pu and to be very tolerant of the impurities accompanying the plutonium material streams. Thus, this waste form would be suitable for dispositioning plutonium owned by the Department of Energy-Office of Environmental Management (DOE-EM) that may not be well characterized and may contain high levels of impurities. The can-in-canister technology demonstrated in the PIP could be utilized to dispose of the vitrified plutonium in the federal radioactive waste repository. The can-in-canister technology involves placing small cans of the immobilized Pu form into a high level waste (HLW) glass canister fitted with a rack to hold the cans and then filling the canister with HLW glass. Testing was completed to demonstrate thatmore » this technology could be successfully employed with little or no impact to current Defense Waste Processing Facility (DWPF) operation and that the resulting canisters were essentially equivalent to the present HLW glass canisters to be dispositioned in the federal repository. The performance of wastes in the repository and, moreover, the performance of the entire repository system is being evaluated by the Department of Energy-Office of Civilian Radioactive Waste Management (DOE-RW) using a Total System Performance Assessment (TSPA) methodology. Technical bases documents (e.g., Analysis/Modeling Reports (AMR)) that address specific issues regarding waste form performance are being used to develop process models as input to the TSPA analyses. In this report, models developed in five AMRs for waste forms currently slated for disposition in the repository are evaluated for their applicability to waste forms with plutonium immobilized in LaBS glass using the can-in-canister technology. Those AMRs address: high-level waste glass degradation; radionuclide inventory; in-package chemistry; dissolved concentration limits of radioactive elements; and colloid-associated radionuclide concentrations. Based on evaluation of how the models treated HLW glass and similarities in the corrosion behaviors of borosilicate HLW glasses and LaBS glass, the models in the AMRs were deemed to be directly applicable to the disposition of excess weapons-useable plutonium. The evaluations are summarized.« less

Authors:
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
901094
Report Number(s):
WSRC-TR-2003-00530
TRN: US0702571
DOE Contract Number:
DE-AC09-96SR18500
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; BOROSILICATE GLASS; CONTAINERS; CORROSION; GLASS; IMPURITIES; OXIDES; PERFORMANCE; PLUTONIUM; RADIOACTIVE WASTE MANAGEMENT; RADIOACTIVE WASTES; RADIOISOTOPES; RARE EARTHS; VITRIFICATION; WASTE FORMS; WASTE PROCESSING; YUCCA MOUNTAIN

Citation Formats

Marra, J. ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA). United States: N. p., 2007. Web. doi:10.2172/901094.
Marra, J. ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA). United States. doi:10.2172/901094.
Marra, J. Mon . "ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA)". United States. doi:10.2172/901094. https://www.osti.gov/servlets/purl/901094.
@article{osti_901094,
title = {ACCOUNTING FOR A VITRIFIED PLUTONIUM WASTE FORM IN THE YUCCA MOUNTAIN REPOSITORY TOTAL SYSTEM PERFORMANCE ASSESSMENT (TSPA)},
author = {Marra, J},
abstractNote = {A vitrification technology utilizing a lanthanide borosilicate (LaBS) glass appears to be a viable option for dispositioning excess weapons-useable plutonium that is not suitable for processing into mixed oxide (MOX) fuel. A significant effort to develop a glass formulation and vitrification process to immobilize plutonium was completed in the mid-1990s to support the Plutonium Immobilization Program (PIP). Further refinement of the vitrification process was accomplished as part of the Am/Cm solution vitrification project. The LaBS glass formulation was found to be capable of immobilizing in excess of 10 wt% Pu and to be very tolerant of the impurities accompanying the plutonium material streams. Thus, this waste form would be suitable for dispositioning plutonium owned by the Department of Energy-Office of Environmental Management (DOE-EM) that may not be well characterized and may contain high levels of impurities. The can-in-canister technology demonstrated in the PIP could be utilized to dispose of the vitrified plutonium in the federal radioactive waste repository. The can-in-canister technology involves placing small cans of the immobilized Pu form into a high level waste (HLW) glass canister fitted with a rack to hold the cans and then filling the canister with HLW glass. Testing was completed to demonstrate that this technology could be successfully employed with little or no impact to current Defense Waste Processing Facility (DWPF) operation and that the resulting canisters were essentially equivalent to the present HLW glass canisters to be dispositioned in the federal repository. The performance of wastes in the repository and, moreover, the performance of the entire repository system is being evaluated by the Department of Energy-Office of Civilian Radioactive Waste Management (DOE-RW) using a Total System Performance Assessment (TSPA) methodology. Technical bases documents (e.g., Analysis/Modeling Reports (AMR)) that address specific issues regarding waste form performance are being used to develop process models as input to the TSPA analyses. In this report, models developed in five AMRs for waste forms currently slated for disposition in the repository are evaluated for their applicability to waste forms with plutonium immobilized in LaBS glass using the can-in-canister technology. Those AMRs address: high-level waste glass degradation; radionuclide inventory; in-package chemistry; dissolved concentration limits of radioactive elements; and colloid-associated radionuclide concentrations. Based on evaluation of how the models treated HLW glass and similarities in the corrosion behaviors of borosilicate HLW glasses and LaBS glass, the models in the AMRs were deemed to be directly applicable to the disposition of excess weapons-useable plutonium. The evaluations are summarized.},
doi = {10.2172/901094},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Feb 12 00:00:00 EST 2007},
month = {Mon Feb 12 00:00:00 EST 2007}
}

Technical Report:

Save / Share: