skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: R AND D 100 EARLYBIRD AWARD ENTRY

Abstract

The Smart Latch{trademark} is an electronically enhanced door lockset device for industrial and consumer applications, which uses existing neural network technology to analyze the sequence, timing, and acoustic signatures associated with lockset functions and provides immediate indication of failure to correctly lock and latch. It essentially ''listens'' to and learns the sequences and acoustic signatures associated with lockset function and latching. When triggered by specific door activity the Smart Latch{trademark} begins analyzing sequences, frequencies and other parameters. With a satisfactory outcome the device provides positive feedback (e.g. visual and/or audible) and returns to a ''sleep'' state awaiting the next activity. If any part of the normal door operation, including latching and length of time, are incorrect various alarm signals can be generated. With electronics and 5+ year battery integrated, the device is simple to install and transparent to the user. Because the device uses proven voice recognition algorithms, it could meet or exceed the performance of the human ear in detecting the unique and complex acoustic signature associated with a properly operating and secured door. Unlike existing technologies, such as limit switches, it is not easily spoofed or defeated and has a high level of immunity to interference. The Smartmore » Latch{trademark} technology can be integrated into existing lockset and door hardware designs, including both low price consumer products and high end electronic/cipher locks. The concept and design are based on a simple security industry adage: ''It isn't locked if it isn't latched''. Even the most elaborate and robust security barriers are of little use if the locking and latching mechanisms are not properly functioning and engaged. Smart Latch{trademark} provides automatic verification of the first and most important step in facility security: Close and properly latch doors and barriers. It is a compelling product for households with children, elderly, or high traffic areas such as an office where a properly closed and latched door is essential for security and safety. In an age of ever increasing security concerns and limited human resources, Smart Latch{trademark} can be a significant addition to the $20 billion plus industrial and consumer lockset market. The Smart Latch{trademark} is unique because: (1) as an inexpensive, battery powered, stand-alone device or as integrated into any standard consumer lock set, the device uses neural network technology to analyze the acoustic signatures associated with normal door operation and generates an alert if a door is not latched correctly and within a set amount of time. (2) It is not easily spoofed or defeated. (3) Installation, setup, and use are simple.« less

Authors:
;
Publication Date:
Research Org.:
SRS
Sponsoring Org.:
USDOE
OSTI Identifier:
901091
Report Number(s):
SRNL-BMD-2007-00002
TRN: US200713%%60
DOE Contract Number:
DE-AC09-96SR18500
Resource Type:
Conference
Resource Relation:
Conference: R and D Awards
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; ACOUSTIC DETECTION; DESIGN; DOORS; NEURAL NETWORKS; PERFORMANCE; SECURITY SEALS; ENTRY CONTROL SYSTEMS

Citation Formats

Dugan, J, and Debbie Chapman, D. R AND D 100 EARLYBIRD AWARD ENTRY. United States: N. p., 2007. Web.
Dugan, J, & Debbie Chapman, D. R AND D 100 EARLYBIRD AWARD ENTRY. United States.
Dugan, J, and Debbie Chapman, D. Tue . "R AND D 100 EARLYBIRD AWARD ENTRY". United States. doi:. https://www.osti.gov/servlets/purl/901091.
@article{osti_901091,
title = {R AND D 100 EARLYBIRD AWARD ENTRY},
author = {Dugan, J and Debbie Chapman, D},
abstractNote = {The Smart Latch{trademark} is an electronically enhanced door lockset device for industrial and consumer applications, which uses existing neural network technology to analyze the sequence, timing, and acoustic signatures associated with lockset functions and provides immediate indication of failure to correctly lock and latch. It essentially ''listens'' to and learns the sequences and acoustic signatures associated with lockset function and latching. When triggered by specific door activity the Smart Latch{trademark} begins analyzing sequences, frequencies and other parameters. With a satisfactory outcome the device provides positive feedback (e.g. visual and/or audible) and returns to a ''sleep'' state awaiting the next activity. If any part of the normal door operation, including latching and length of time, are incorrect various alarm signals can be generated. With electronics and 5+ year battery integrated, the device is simple to install and transparent to the user. Because the device uses proven voice recognition algorithms, it could meet or exceed the performance of the human ear in detecting the unique and complex acoustic signature associated with a properly operating and secured door. Unlike existing technologies, such as limit switches, it is not easily spoofed or defeated and has a high level of immunity to interference. The Smart Latch{trademark} technology can be integrated into existing lockset and door hardware designs, including both low price consumer products and high end electronic/cipher locks. The concept and design are based on a simple security industry adage: ''It isn't locked if it isn't latched''. Even the most elaborate and robust security barriers are of little use if the locking and latching mechanisms are not properly functioning and engaged. Smart Latch{trademark} provides automatic verification of the first and most important step in facility security: Close and properly latch doors and barriers. It is a compelling product for households with children, elderly, or high traffic areas such as an office where a properly closed and latched door is essential for security and safety. In an age of ever increasing security concerns and limited human resources, Smart Latch{trademark} can be a significant addition to the $20 billion plus industrial and consumer lockset market. The Smart Latch{trademark} is unique because: (1) as an inexpensive, battery powered, stand-alone device or as integrated into any standard consumer lock set, the device uses neural network technology to analyze the acoustic signatures associated with normal door operation and generates an alert if a door is not latched correctly and within a set amount of time. (2) It is not easily spoofed or defeated. (3) Installation, setup, and use are simple.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 30 00:00:00 EST 2007},
month = {Tue Jan 30 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This compilation contains a fact sheet on each of the 1987 IR-100 award-winning technologies, including a description of the technology and its advantages. The status of pertinent patents is given, including any licensing data. The potential uses and possible spinoff applications for the technology also are indicated, along with a contact for additional information. (JDH)
  • This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Computational models of oil, gas, and water flow through porous reservoir rock are used in reservoir management to decide whether or not, and how, to develop and produce hydrocarbon reserves. The flow models have major impact on these decisions so their accuracy, cost, and speed is paramount. The accuracy of the flow models is strongly dependent on the accuracy of the physical characterization of the reservoir rock`s pore-fluid system. System characterization is typically done in the laboratory. As anmore » alternative, we have developed a numerical approach for determining the constitutive information. The project sought to use computational techniques that could incorporate all of the basic physical processes that influence fluid movement through the porous rock yet remain computationally efficient. The lattice Boltzmann (LB) numerical technique fits these requirements, and is able to incorporate complex pore geometries exactly and reproduce behavior of multiple fluids. The flexibility of the LB approach allows the numerical model, called the lattice Boltzmann Permeameter (LBP), to determine constitutive relationships (i.e., relative permeabilities) over a much wider range of conditions than can be achieved in a laboratory. Our project was directed toward improving the LBP to make it available to a wide range of users. Improvements were made in computational speed and efficiency, user interfaces, and visualization capabilities.« less
  • Fact sheet describing NREL's work with Recombination Technologies and Optima Batteries to develop a current interrupt charging algorithm to extend the deep life cycle of valve-regulated lead-acid batteries.
  • An LLNL team of six physicists has developed a new technology that is a stepping stone to enable some of the limitations on high-power fiber lasers to be overcome. Their technology, dubbed "Efficient Mode-Converters for High-Power Fiber Amplifiers," allows the power of fiber lasers to be increased while maintaining high beam quality. Currently, fiber lasers are used in machining, on factory floors and in a number of defense applications and can produce tens of kilowatts of power.The conventional fiber laser design features a circular core and has fundamental limitations that make it impractical to allow higher laser power unless themore » core area is increased. LLNL researchers have pioneered a design to increase the laser's core area along the axis of the ribbon fiber. Their design makes it difficult to use a conventional laser beam, so the LLNL team converted the beam into a profile that propagates into the ribbon fiber and is converted back once it is amplified. The use of this LLNL technology will permit the construction of higher power lasers for lower costs and increase the power of fiber lasers from tens of kilowatts of power to about 100 kilowatts and potentially even higher.« less
  • A team of LLNL scientists and engineers has developed a safe and versatile material, known as DNA Tagged Reagents for Aerosol Experiments (DNATrax), that can be used to reliably and rapidly diagnose airflow patterns and problems in both indoor and outdoor venues. Until DNATrax particles were developed, no rapid or safe way existed to validate air transport models with realistic particles in the range of 1-10 microns. Successful DNATrax testing was conducted at the Pentagon in November 2012 in conjunction with the Pentagon Force Protection Agency. This study enhanced the team's understanding of indoor ventilation environments created by heating, ventilationmore » and air conditioning (HVAC) systems. DNATrax are particles comprised of sugar and synthetic DNA that serve as a bar code for the particle. The potential for creating unique bar-coded particles is virtually unlimited, thus allowing for simultaneous and repeated releases, which dramatically reduces the costs associated with conducting tests for contaminants. Among the applications for the new material are indoor air quality detection, for homes, offices, ships and airplanes; urban particulate tracking, for subway stations, train stations, and convention centers; environmental release tracking; and oil and gas uses, including fracking, to better track fluid flow.« less