skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007

Abstract

Butt joint tool vacuum vessel has been built at C&H Enterprise, Inc. Leak checking and loading tests were taken place at the factory. The conductor could not be pumped down better than to 500 mtorr and therefore we could not check the sealing mechanism of the seal around conductor. But the rest of the vessel, including the flat gasket, one of the difficult seals worked well, no indication of leak at sensitivity 1e-7 l*torr/sec. The load test showed fully functional system of the load mechanism. The conductors were loaded up to 2200 kgf (21560 N) and the pressure between the butts was uniform with 100% of the contact proved by pressure sensitive film. The status of the butt joint tool development is reported.

Authors:
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
900872
Report Number(s):
UCRL-TR-227786
TRN: US200711%%734
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; FUNCTIONALS; SENSITIVITY; ENGINEERING

Citation Formats

Martovetsky, N N. Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007. United States: N. p., 2007. Web. doi:10.2172/900872.
Martovetsky, N N. Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007. United States. doi:10.2172/900872.
Martovetsky, N N. Thu . "Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007". United States. doi:10.2172/900872. https://www.osti.gov/servlets/purl/900872.
@article{osti_900872,
title = {Butt Joint Tool Status: ITER-US-LLNL-NMARTOVETSKY-01312007},
author = {Martovetsky, N N},
abstractNote = {Butt joint tool vacuum vessel has been built at C&H Enterprise, Inc. Leak checking and loading tests were taken place at the factory. The conductor could not be pumped down better than to 500 mtorr and therefore we could not check the sealing mechanism of the seal around conductor. But the rest of the vessel, including the flat gasket, one of the difficult seals worked well, no indication of leak at sensitivity 1e-7 l*torr/sec. The load test showed fully functional system of the load mechanism. The conductors were loaded up to 2200 kgf (21560 N) and the pressure between the butts was uniform with 100% of the contact proved by pressure sensitive film. The status of the butt joint tool development is reported.},
doi = {10.2172/900872},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 01 00:00:00 EST 2007},
month = {Thu Feb 01 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • ITER Central Solenoid uses butt joints for connecting the pancakes in the CS module. The principles of the butt joining of the CICC were developed by the JAPT during CSMC project. The difference between the CSMC butt joint and the CS butt joint is that the CS butt joint is an in-line joint, while the CSMC is a double joint through a hairpin jumper. The CS butt joint has to carry the hoop load. The straight length of the joint is only 320 mm, and the vacuum chamber around the joint has to have a split in the clamp shell.more » These requirements are challenging. Fig.1 presents a CSMC joint, and Fig.2 shows a CS butt joint. The butt joint procedure was verified and demonstrated. The tool is capable of achieving all specified parameters. The vacuum in the end was a little higher than the target, which is not critical and readily correctable. We consider, tentatively that the procedure is established. Unexpectedly, we discover significant temperature nonuniformity in the joint cross section, which is not formally a violation of the specs, but is a point of concern. All testing parameters are recorded for QA purposes. We plan to modify the butt joining tool to improve its convenience of operation and provide all features necessary for production of butt joints by qualified personnel.« less
  • Measuring the characteristics of full scale ITER CICC at SULTAN is the critical qualification test. If volt-ampere characteristic (VAC) or volt-temperature characteristic (VTC) are distorted, the criterion of 10 uV/m may not be a valid criterion to judge the conductor performance. Only measurements with a clear absence or low signals from the current distribution should be considered as quantitatively representative, although in some obvious circumstances one can judge if a conductor will meet or fail ITER requirements. SULTAN full scale ITER CICC testing should be done with all measures taken to ensure uniform current redistribution. A full removal of Crmore » plating in the joint area and complete solder filling of the joints (with provision of the central channel for helium flow) should be mandatory for DC qualification samples for ITER. Also, T and I should be increased slowly that an equilibrium could be established for accurate measurement of Tcs, Ic and N. It is also desirable to go up in down in current and/or temperature (within stable range) to make sure that the equilibrium is reached.« less
  • A summary is presented of current and future cooperative studies between ENEA and LLNL researchers designed to develop improved real-time emergency response capabilities for assessing the environmental consequences resulting from an accidental release of toxic materials into the atmosphere. These studies include development and evaluation of atmospheric transport and dispersion models, interfacing of data processing and communications systems, supporting meteorological field experiments, and integration of radiological measurements and model results into real-time assessments.