skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inertial Confinement Fusion Materials Science

Journal Article · · Encyclopedia of Materials: Science and Technology, n/a, n/a, January 1, 2006, pp. 1-11
OSTI ID:900138

Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable than the x-ray driven ablation of indirect drive. The symmetry of the implosion depends sensitively on the balance of the intensity of the individual beams driving the target. Variations in intensity imprint perturbations on the target that are amplified by hydrodynamic instabilities. Indirect drive is less efficient at coupling energy to a capsule than direct drive because of the conversion to x-rays in the hohlraum. However, indirect drive is less sensitive to variations in beam intensity and hydrodynamic instabilities. The ignition threshold for directly-driven and indirectly-driven targets is about the same. However, the gain is calculated to be about a factor of 2 greater in directly driven targets.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
900138
Report Number(s):
UCRL-JRNL-204455; TRN: US0702169
Journal Information:
Encyclopedia of Materials: Science and Technology, n/a, n/a, January 1, 2006, pp. 1-11, Journal Name: Encyclopedia of Materials: Science and Technology, n/a, n/a, January 1, 2006, pp. 1-11
Country of Publication:
United States
Language:
English