skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Markers of Lung Cancer in MAYAK Workers

Abstract

The molecular mechanisms that result in the elevated risk for lung cancer associated with exposure to radiation have not been well characterized. Workers from the MAYAK nuclear enterprise are an ideal cohort in which to study the molecular epidemiology of cancer associated with radiation exposure and to identify the genes targeted for inactivation that in turn affect individual risk for radiation-induced lung cancer. Epidemiology studies of the MAYAK cohort indicate a significantly higher frequency for adenocarcinoma and squamous cell carcinoma (SCC) in workers than in a control population and a strong correlation between these tumor types and plutonium exposure. Two hypotheses will be evaluated through the proposed studies. First, radiation exposure targets specific genes for inactivation by promoter methylation. This hypothesis is supported by our recent studies with the MAYAK population that demonstrated the targeting of the p16 gene for inactivation by promoter methylation in adenocarcinomas from workers (1). Second, genes inactivated in tumors can serve as biomarkers for lung cancer risk in a cancer-free population of workers exposed to plutonium. Support for this hypothesis is based on exciting preliminary results of our nested, case-control study of persons from the Colorado cohort. In that study, a panel of methylation markersmore » for predicting lung cancer risk is being evaluated in sputum samples from incident lung cancer cases and controls. The first hypothesis will be tested by determining the prevalence for promoter hypermethylation of a panel of genes shown to play a critical role in the development of either adenocarcinoma and/or SCC associated with tobacco. Our initial studies on adenocarcinoma in MAYAK workers will be extended to evaluate methylation of the PAX5 {alpha}, PAX5 {beta}, H-cadherin, GATA5, and bone morphogenesis 3B (BMP3B) genes in the original sample set described under Preliminary studies. In addition, studies will be initiated in SCC from workers and controls to identify genes targeted for inactivation by plutonium in this other common histologic form of lung cancer. We will examine methylation of the p16, O{sup 6}-methylguanine-DNA methyl-transferase (MGMT), and death associated protein kinase genes ([DAP-K], evaluated previously in adenocarcinomas) as well as the new genes being assessed in the adenocarcinomas. The second hypothesis will be tested in a cross-sectional study of cancer-free workers exposed to plutonium and an unexposed population. A cohort of 700 cancer-free workers and 700 unexposed persons is being assembled, exposures are being defined, and induced sputum collected at initial entry into the study and approximately 1-year later. Exposed and unexposed persons will be matched by 5-year age intervals and smoking status (current and former). The frequency for methylation of four genes that show the greatest difference in prevalence in tumors from workers and controls will be determined in exfoliated cells within sputum. These studies will extend those in primary tumors to determine whether difference in prevalence for individual or multiple genes are detected in sputum samples from high-risk subjects exposed to plutonium. Follow-up of this cohort offers the opportunity to validate these endpoints and future biomarkers as true markers for lung cancer risk.« less

Authors:
Publication Date:
Research Org.:
Lovelace Biomedical & Environmental Research Institute
Sponsoring Org.:
USDOE - Office of Environment, Safety and Health (EH)
OSTI Identifier:
899630
Report Number(s):
Project 2.6
TRN: US0702614
DOE Contract Number:
FC02-98EH98028
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; CARCINOMAS; DEATH; EPIDEMIOLOGY; GENES; HYPOTHESIS; INACTIVATION; LUNGS; METHYLATION; MORPHOGENESIS; NEOPLASMS; PHOSPHOTRANSFERASES; PLUTONIUM; PROMOTERS; PROTEINS; RADIATIONS; TOBACCO

Citation Formats

Steven A. Belinsky, PhD. Molecular Markers of Lung Cancer in MAYAK Workers. United States: N. p., 2007. Web. doi:10.2172/899630.
Steven A. Belinsky, PhD. Molecular Markers of Lung Cancer in MAYAK Workers. United States. doi:10.2172/899630.
Steven A. Belinsky, PhD. Thu . "Molecular Markers of Lung Cancer in MAYAK Workers". United States. doi:10.2172/899630. https://www.osti.gov/servlets/purl/899630.
@article{osti_899630,
title = {Molecular Markers of Lung Cancer in MAYAK Workers},
author = {Steven A. Belinsky, PhD},
abstractNote = {The molecular mechanisms that result in the elevated risk for lung cancer associated with exposure to radiation have not been well characterized. Workers from the MAYAK nuclear enterprise are an ideal cohort in which to study the molecular epidemiology of cancer associated with radiation exposure and to identify the genes targeted for inactivation that in turn affect individual risk for radiation-induced lung cancer. Epidemiology studies of the MAYAK cohort indicate a significantly higher frequency for adenocarcinoma and squamous cell carcinoma (SCC) in workers than in a control population and a strong correlation between these tumor types and plutonium exposure. Two hypotheses will be evaluated through the proposed studies. First, radiation exposure targets specific genes for inactivation by promoter methylation. This hypothesis is supported by our recent studies with the MAYAK population that demonstrated the targeting of the p16 gene for inactivation by promoter methylation in adenocarcinomas from workers (1). Second, genes inactivated in tumors can serve as biomarkers for lung cancer risk in a cancer-free population of workers exposed to plutonium. Support for this hypothesis is based on exciting preliminary results of our nested, case-control study of persons from the Colorado cohort. In that study, a panel of methylation markers for predicting lung cancer risk is being evaluated in sputum samples from incident lung cancer cases and controls. The first hypothesis will be tested by determining the prevalence for promoter hypermethylation of a panel of genes shown to play a critical role in the development of either adenocarcinoma and/or SCC associated with tobacco. Our initial studies on adenocarcinoma in MAYAK workers will be extended to evaluate methylation of the PAX5 {alpha}, PAX5 {beta}, H-cadherin, GATA5, and bone morphogenesis 3B (BMP3B) genes in the original sample set described under Preliminary studies. In addition, studies will be initiated in SCC from workers and controls to identify genes targeted for inactivation by plutonium in this other common histologic form of lung cancer. We will examine methylation of the p16, O{sup 6}-methylguanine-DNA methyl-transferase (MGMT), and death associated protein kinase genes ([DAP-K], evaluated previously in adenocarcinomas) as well as the new genes being assessed in the adenocarcinomas. The second hypothesis will be tested in a cross-sectional study of cancer-free workers exposed to plutonium and an unexposed population. A cohort of 700 cancer-free workers and 700 unexposed persons is being assembled, exposures are being defined, and induced sputum collected at initial entry into the study and approximately 1-year later. Exposed and unexposed persons will be matched by 5-year age intervals and smoking status (current and former). The frequency for methylation of four genes that show the greatest difference in prevalence in tumors from workers and controls will be determined in exfoliated cells within sputum. These studies will extend those in primary tumors to determine whether difference in prevalence for individual or multiple genes are detected in sputum samples from high-risk subjects exposed to plutonium. Follow-up of this cohort offers the opportunity to validate these endpoints and future biomarkers as true markers for lung cancer risk.},
doi = {10.2172/899630},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 15 00:00:00 EST 2007},
month = {Thu Feb 15 00:00:00 EST 2007}
}

Technical Report:

Save / Share:
  • OAK - Feasibility Assessment of Biodosimetry and Molecular Epidemiology Studies among Mayak PA Workers
  • For the estimation of radiation lung cancer risk for a human being it is important to take into account different etiological factors because of the polyetiology of this disease. This work was the aim of a retrospective investigation ({open_quotes}case-control{close_quotes}) of 500 workers of a nuclear enterprise that had been gamma-irradiated in a wide dose range and had had exposure to airborne {sup 239}Pu. One hundred sixty-two persons contracted lung cancer (morbidity), and 338 persons that had not fallen ill served as pair control. Eleven potential risk factors were evaluated using a logistic regression model, five insignificant factors were excluded, andmore » the remaining factors were arranged (by odds ratio) in decreasing order: smoking > plutonium pneumosclerosis > plutonium incorporation in body > chronic obstructive pulmonary disease (COPD) > decrease of body mass > external gamma-irradiation. The percentage of histologically confirmed adenocarcinoma among the nuclear enterprise workers was 74% which is significantly higher than 33% among the population that did not work at the enterprise, particularly in the case of high (more than 11 kBq) plutonium incorporation by the nuclear workers. The localization of tumors in this cohort is more frequently in the lower and middle lung lobes at the periphery. Each of the histological types of lung cancer has manifested a different degree of correlation with particular factors. 32 refs., 1 fig., 3 tabs.« less
  • A total of 1165 steel workers who had been exposed to sulfuric acid and other acid mists during steel-pickling operations were studied to determine whether there was any evidence of respiratory cancer which could be linked to these exposures. These workers had been employed at three large midwestern steel-manufacturing operations where acid was used to remove oxides from newly produced steel. Cancer of the trachea, bronchus, and lung showed increased mortality in this study. Deaths from buccal cavity, pharynx, and larynx cancers were at normal levels. Deaths from nonmalignant respiratory diseases were lower than normal rates. The excess lung-cancer casesmore » occurred both in workers who had been exposed only to sulfuric-acid mists and in those exposed only to other acids. The authors conclude that there was an increased risk of lung cancer in workers exposed to sulfuric acid and in workers exposed to other acids. Continued monitoring of lung-cancer rates is recommended by the authors, since other acids have replaced sulfuric acid to a great degree.« less
  • The study measured the exposure of railroad workers to diesel exhaust and environmental tobacco smoke by using personal air samples taken over two consecutive work shifts. Urine samples were collected from 87 subjects at the end of the study work shifts and were analyzed for markers of cigarette smoking (nicotine, cotinine) and for mutagenicity, using a sensitive microsuspension assay (Salmonella strain TA98 with or without S9 enzyme). Among smokers, a dose-response relationship was observed between urinary mutagenicity and the number of cigarettes smoked on the study day. After cigarette smoking was controlled for, no association was present between diesel exhaustmore » exposure and urinary mutagenicity. Among nonsmokers, detectable concentrations of mutagens were present in the urine, but no association could be found between markers of diesel exhaust or environmental tobacco smoke and urinary mutagenicity. It was concluded that the mutagens associated with the levels of exposure to diesel exhaust or environmental tobacco smoke in the study were undetectable in the urine.« less
  • 1,3-Butadiene (BD) is used to manufacture a wide range of polymers and copolymers including styrene-butadiene rubber, polybutadiene, and acrylonitrile-butadiene-syrene resins. The carcinogenicity of BD has been determined in life-span inhalation studies in both Sprague-Dawley rats and B6C3F{sub 1} mice. Results suggest a marked species difference in the carcinogenic effects of BD. For example, female mice exposed to as low as 6.25 ppm BD exhibited increased alveolar/bronchiolar neoplasms. In contrast, BD was only a weak carcinogen in Sprague-Dawley rats. Rats were observed to have an increase only in mammary tumors after exposure to 1000 ppm. A biochemical study of highly exposedmore » BD workers and unexposed controls is providing valuable information on BD metabolism in humans, and how this relates to the development of intermediate biologic effects. A group of heavily exposed workers were identified in a BD production facility in China. The purpose of this paper is to report the initial results from the sampling trip in the first quarter of 1994.« less