skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Adaptive Optics Imaging Survey of Luminous Infrared Galaxies

Abstract

We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
899116
Report Number(s):
UCRL-JRNL-220895
TRN: US200706%%499
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astronomical Journal, vol. 131, no. 6, June 1, 2006, pp. 2877-2887
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; GALAXIES; NUCLEI; OPTICS; RESOLUTION; STARS

Citation Formats

Laag, E A, Canalizo, G, van Breugel, W, Gates, E L, de Vries, W, and Stanford, S A. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies. United States: N. p., 2006. Web. doi:10.1086/504112.
Laag, E A, Canalizo, G, van Breugel, W, Gates, E L, de Vries, W, & Stanford, S A. Adaptive Optics Imaging Survey of Luminous Infrared Galaxies. United States. doi:10.1086/504112.
Laag, E A, Canalizo, G, van Breugel, W, Gates, E L, de Vries, W, and Stanford, S A. Mon . "Adaptive Optics Imaging Survey of Luminous Infrared Galaxies". United States. doi:10.1086/504112. https://www.osti.gov/servlets/purl/899116.
@article{osti_899116,
title = {Adaptive Optics Imaging Survey of Luminous Infrared Galaxies},
author = {Laag, E A and Canalizo, G and van Breugel, W and Gates, E L and de Vries, W and Stanford, S A},
abstractNote = {We present high resolution imaging observations of a sample of previously unidentified far-infrared galaxies at z < 0.3. The objects were selected by cross-correlating the IRAS Faint Source Catalog with the VLA FIRST catalog and the HST Guide Star Catalog to allow for adaptive optics observations. We found two new ULIGs (with L{sub FIR} {ge} 10{sup 12} L{sub {circle_dot}}) and 19 new LIGs (with L{sub FIR} {ge} 10{sup 11} L{sub {circle_dot}}). Twenty of the galaxies in the sample were imaged with either the Lick or Keck adaptive optics systems in H or K{prime}. Galaxy morphologies were determined using the two dimensional fitting program GALFIT and the residuals examined to look for interesting structure. The morphologies reveal that at least 30% are involved in tidal interactions, with 20% being clear mergers. An additional 50% show signs of possible interaction. Line ratios were used to determine powering mechanism; of the 17 objects in the sample showing clear emission lines--four are active galactic nuclei and seven are starburst galaxies. The rest exhibit a combination of both phenomena.},
doi = {10.1086/504112},
journal = {Astronomical Journal, vol. 131, no. 6, June 1, 2006, pp. 2877-2887},
number = ,
volume = ,
place = {United States},
year = {Mon Mar 13 00:00:00 EST 2006},
month = {Mon Mar 13 00:00:00 EST 2006}
}
  • We have established a relation between the brightest super star cluster (SSC) magnitude in a galaxy and the host star formation rate (SFR) for the first time in the near-infrared (NIR). The data come from a statistical sample of ∼40 luminous IR galaxies (LIRGs) and starbursts utilizing K-band adaptive optics imaging. While expanding the observed relation to longer wavelengths, less affected by extinction effects, it also pushes to higher SFRs. The relation we find, M{sub K} ∼ –2.6log SFR, is similar to that derived previously in the optical and at lower SFRs. It does not, however, fit the optical relationmore » with a single optical to NIR color conversion, suggesting systematic extinction and/or age effects. While the relation is broadly consistent with a size-of-sample explanation, we argue physical reasons for the relation are likely as well. In particular, the scatter in the relation is smaller than expected from pure random sampling strongly suggesting physical constraints. We also derive a quantifiable relation tying together cluster-internal effects and host SFR properties to possibly explain the observed brightest SSC magnitude versus SFR dependency.« less
  • We present the results of infrared K- (2.2 μm) and L'-band (3.8 μm) high-spatial-resolution (<0.''2) imaging observations of nearby gas- and dust-rich infrared luminous merging galaxies, assisted by the adaptive optics system on the Subaru 8.2 m telescope. We investigate the presence and frequency of red K – L' compact sources, which are sensitive indicators of active galactic nuclei (AGNs), including AGNs that are deeply buried in gas and dust. We observed 29 merging systems and confirmed at least one AGN in all but one system. However, luminous dual AGNs were detected in only four of the 29 systems (∼14%),more » despite our method's being sensitive to buried AGNs. For multiple nuclei sources, we compared the estimated AGN luminosities with supermassive black hole (SMBH) masses inferred from large-aperture K-band stellar emission photometry in individual nuclei. We found that mass accretion rates onto SMBHs are significantly different among multiple SMBHs, such that larger-mass SMBHs generally show higher mass accretion rates when normalized to SMBH mass. Our results suggest that non-synchronous mass accretion onto SMBHs in gas- and dust-rich infrared luminous merging galaxies hampers the observational detection of kiloparsec-scale multiple active SMBHs. This could explain the significantly smaller detection fraction of kiloparsec-scale dual AGNs when compared with the number expected from simple theoretical predictions. Our results also indicate that mass accretion onto SMBHs is dominated by local conditions, rather than by global galaxy properties, reinforcing the importance of observations to our understanding of how multiple SMBHs are activated and acquire mass in gas- and dust-rich merging galaxies.« less
  • We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {submore » II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the present day and z > 1 is already significant by z ∼ 0.3.« less
  • We present the results of a ground-based, high spatial resolution infrared 18 {mu}m imaging study of nearby luminous infrared galaxies (LIRGs), using the Subaru 8.2 m and Gemini-South 8.1 m telescopes. The diffraction-limited images routinely achieved with these telescopes in the Q band (17-23 {mu}m) allow us to investigate the detailed spatial distribution of infrared emission in these LIRGs. We then investigate whether the emission surface brightnesses are modest, as observed in starbursts, or are so high that luminous active galactic nuclei (AGNs; high emission surface brightness energy sources) are indicated. The sample consists of 18 luminous buried AGN candidatesmore » and starburst-classified LIRGs identified in earlier infrared spectroscopy. We find that the infrared 18 {mu}m emission from the buried AGN candidates is generally compact, and the estimated emission surface brightnesses are high, sometimes exceeding the maximum value observed in and theoretically predicted for a starburst phenomenon. The starburst-classified LIRGs usually display spatially extended 18 {mu}m emission and the estimated emission surface brightnesses are modest, within the range sustained by a starburst phenomenon. The general agreement between infrared spectroscopic and imaging energy diagnostic methods suggests that both are useful tools for understanding the hidden energy sources of the dusty LIRG population.« less
  • This paper presents the results from a 21-cm Arecibo survey of the atomic hydrogen and radio continuum in the most luminous IRAS galaxies of the local universe. Ninety-two galaxies with FIR luminosities in the range of L(FIR) between the solar luminosity values of 2 x 10 to the 10th and 2 x 10 to the 12th were surveyed. Eighty eight of these were detected in the 21 cm line of atomic hydrogen; the radio continuum flux was determined for 80 galaxies. The data of this survey are compared the FIR and optical-wavelength band results. It is noted that luminous IRmore » galaxies show a striking statistical trend for the optical radial velocities to be smaller than the systemic velocities derived from the 21 H I profiles. 39 references.« less