skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The distribution of subsurface damage in fused silica

Abstract

Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
898591
Report Number(s):
UCRL-CONF-217443
TRN: US200706%%226
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Conference
Resource Relation:
Conference: Presented at: Boulder Damage Symposium, Boulder, CO, United States, Sep 19 - Sep 21, 2005
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; ABRASIVES; DISTRIBUTION; FABRICATION; FRACTURES; GRINDING; LASERS; MORPHOLOGY; PEAK LOAD; POLISHING; PRODUCTION; REMOVAL; SHAPE; SILICA

Citation Formats

Miller, P E, Suratwala, T I, Wong, L L, Feit, M D, Menapace, J A, Davis, P J, and Steele, R A. The distribution of subsurface damage in fused silica. United States: N. p., 2005. Web.
Miller, P E, Suratwala, T I, Wong, L L, Feit, M D, Menapace, J A, Davis, P J, & Steele, R A. The distribution of subsurface damage in fused silica. United States.
Miller, P E, Suratwala, T I, Wong, L L, Feit, M D, Menapace, J A, Davis, P J, and Steele, R A. Mon . "The distribution of subsurface damage in fused silica". United States. doi:. https://www.osti.gov/servlets/purl/898591.
@article{osti_898591,
title = {The distribution of subsurface damage in fused silica},
author = {Miller, P E and Suratwala, T I and Wong, L L and Feit, M D and Menapace, J A and Davis, P J and Steele, R A},
abstractNote = {Managing subsurface damage during the shaping process and removing subsurface damage during the polishing process is essential in the production of low damage density optical components, such as those required for use on high peak power lasers. Removal of subsurface damage, during the polishing process, requires polishing to a depth which is greater than the depth of the residual cracks present following the shaping process. To successfully manage, and ultimately remove subsurface damage, understanding the distribution and character of fractures in the subsurface region introduced during fabrication process is important. We have characterized the depth and morphology of subsurface fractures present following fixed abrasive and loose abrasive grinding processes. At shallow depths lateral cracks and an overlapping series of trailing indentation fractures were found to be present. At greater depths, subsurface damage consists of a series of trailing indentation fractures. The area density of trailing fractures changes as a function of depth, however the length and shape of individual cracks remain nearly constant for a given grinding process. We have developed and applied a model to interpret the depth and crack length distributions of subsurface surface damage in terms of key variables including abrasive size and load.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon Nov 21 00:00:00 EST 2005},
month = {Mon Nov 21 00:00:00 EST 2005}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Sandia's Large Optics Coating Operation has extensive results of laser induced damage threshold (LIDT) testing of its anti-reflection (AR) and high reflection coatings on substrates pitch polished using ceria and washed in a process that includes an alumina wash step. The purpose of the alumina wash step is to remove residual polishing compound to minimize its role in laser damage. These LIDT tests are for multi longitudinal mode, ns class pulses at 1064 nm and 532 nm (NIF-MEL protocol) and mode locked, sub-ps class pulses at 1054 nm (Sandia measurements), and show reasonably high and adequate laser damage resistance formore » coatings in the beam trains of Sandia's Z-Backlighter terawatt and petawatt lasers. An AR coating in addition to coatings of our previous reports confirms this with LIDTs of 33.0 J/cm{sup 2} for 3.5 ns pulses and 1.8 J/cm{sup 2} for 350 fs pulses. In this paper, we investigate both ceria and zirconia in doublesided polishing (common for large flat Z-Backlighter laser optics) as they affect LIDTs of an AR coating on fused silica substrates washed with or without the alumina wash step. For these AR coated, double-sided polished surfaces, ceria polishing in general affords better resistance to laser damage than zirconia polishing and laser damage is less likely with the alumina wash step than without it. This is supported by specific results of laser damage tests with 3.5 ns, multi longitudinal mode, single shot pulses at 1064 nm and 532 nm, with 7.0 ns, single and multi longitudinal mode, single and multi shot pulses at 532 nm, and with 350 fs, mode-locked, single shot pulses at 1054 nm.« less
  • We used 1064-nm pulses with durations of 1, 5, 9 ns to measure laser-damage thresholds of 10 porous silica antireflection coatings deposited from both methanol and ethanol solutions containing silica particles with diameters of 10-20 nm. The median thresholds measured at the three pulse durations, 10.8 J/cm/sup 2/, 26.5 J/cm/sup 2/, and 38 J/cm/sup 2/, scaled as pulse duration to the 0.56 power. 4 refs., 3 figs., 1 tab.
  • The objective of this work is to develop a solid scientific understanding of the creation and characteristics of surface fractures formed during the grinding and polishing of brittle materials, specifically glass. In this study, we have experimentally characterized the morphology, number density, and depth distribution of various surface cracks as a function of various grinding and polishing processes (blanchard, fixed abrasive grinding, loose abrasive, pitch polishing and pad polishing). Also, the effects of load, abrasive particle (size, distribution, foreign particles, geometry, velocity), and lap material (pitch, pad) were examined. The resulting data were evaluated in terms of indentation fracture mechanicsmore » and tribological interactions (science of interacting surfaces) leading to several models to explain crack distribution behavior of ground surfaces and to explain the characteristics of scratches formed during polishing. This project has greatly advanced the scientific knowledge of microscopic mechanical damage occurring during grinding and polishing and has been of general interest. This knowledge-base has also enabled the design and optimization of surface finishing processes to create optical surfaces with far superior laser damage resistance. There are five major areas of scientific progress as a result of this LDRD. They are listed in Figure 1 and described briefly in this summary below. The details of this work are summarized through a number of published manuscripts which are included this LDRD Final Report. In the first area of grinding, we developed a technique to quantitatively and statistically measure the depth distribution of surface fractures (i.e., subsurface damage) in fused silica as function of various grinding processes using mixtures of various abrasive particles size distributions. The observed crack distributions were explained using a model that extended known, single brittle indentation models to an ensemble of loaded, sliding particles. The model illustrates the importance of the particle size distribution of the abrasive and its influence on the resulting crack distribution. The results of these studies are summarized in references 1-7. In the second area of polishing, we conducted a series of experiments showing the influence of rogue particles (i.e., particles in the polishing slurry that are larger than base particles) on the creation of scratches on polished surfaces. Scratches can be thought of a as a specific type of sub-surface damage. The characteristics (width, length, type of fractures, concentration) were explained in terms of the rogue particle size, the rogue particle material, and the viscoelastic properties of the lap. The results of these studies are summarized in references 6-7. In the third area of etching, we conducted experiments aimed at understanding the effect of HF:NH{sub 4}F acid etching on surface fractures on fused silica. Etching can be used as a method: (a) to expose sub-surface mechanical damage, (b) to study the morphology of specific mechanical damage occurring by indentation, and (c) to convert a ground surface containing a high concentration of sub-surface mechanical damage into surface roughness. Supporting models have been developed to describe in detail the effect of etching on the morphology and evolution of surface cracks. The results of these studies are summarized in references 8-9. In the fourth area of scratch forensics or scratch fractography, a set of new scratch forensic rule-of-thumbs were developed in order to aid the optical fabricator and process engineer to interpret the cause of scratches and digs on surfaces. The details of how these rules were developed are described in each of the references included in this summary (1-9). Figure 2 provides as a summary of some of the more commonly used rules-of-thumbs that have been developed in this study. In the fifth and final area of laser damage, we demonstrated that the removal of such surface fractures from the surface during optical fabrication can dramatically improve the laser damage.« less
  • The surface and near surface structure of glass and other optical materials is greatly influenced by the nature of the processes used to generate that surface. In high quality optics, the effects of process changes are often subtle and cannot be seen with conventional metrology. The presence of process induced damage in the near surface region is felt in a number of ways. Damage thresholds for optics subjected to high fluences are a particular problem in UV or high-powered laser systems. In high quality glass, the chemical and material composition of the outermost layer is influenced principally by the grinding,more » lapping and polishing processes used in fabrication. Performance in high fluence applications is often dominated by these process-induced inhomogeneities in the first few hundred nanometers of material. Each succeeding step in a process is designed to remove the damage from the previous operation. However, any force against the surface, no matter how slight will leave evidence of damage. Fabrication processes invariably create dislocations, cracks and plastic deformation between 100 nm and 500 nm below the surface. In glass polishing, the first 100 nm is comprised of material redeposited from the polishing solution. This redeposition layer is responsible for the extremely smooth surfaces that can be generated on glass. Unfortunately, this layer also conceals many flaws present in the deeper surface regions.« less