skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies

Abstract

We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit {approx} 1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of {approx} 5.

Authors:
; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
898447
Report Number(s):
UCRL-JRNL-219392
TRN: US200706%%64
DOE Contract Number:
W-7405-ENG-48
Resource Type:
Journal Article
Resource Relation:
Journal Name: The Astronomical Journal , vol. 131, no. 4, April 1, 2006, pp. 1948-1960
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 99 GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; BLACK HOLES; GALAXIES; OPTICAL PROPERTIES; QUASARS; SPECTRA

Citation Formats

Whalen, J, Laurent-Muehleisen, S A, Moran, E C, and Becker, R H. Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies. United States: N. p., 2006. Web. doi:10.1086/500825.
Whalen, J, Laurent-Muehleisen, S A, Moran, E C, & Becker, R H. Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies. United States. doi:10.1086/500825.
Whalen, J, Laurent-Muehleisen, S A, Moran, E C, and Becker, R H. Thu . "Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies". United States. doi:10.1086/500825. https://www.osti.gov/servlets/purl/898447.
@article{osti_898447,
title = {Optical Properties of Radio-Selected Narrow Line Seyfert 1 Galaxies},
author = {Whalen, J and Laurent-Muehleisen, S A and Moran, E C and Becker, R H},
abstractNote = {We present results from the analysis of the optical spectra of 47 radio-selected narrow-line Seyfert 1 galaxies (NLS1s). These objects are a subset of the First Bright Quasar Survey (FBQS) and were initially detected at 20 cm (flux density limit {approx} 1 mJy) in the VLA FIRST Survey. We run Spearman rank correlation tests on several sets of parameters and conclude that, except for their radio properties, radio-selected NLS1 galaxies do not exhibit significant differences from traditional NLS1 galaxies. Our results are also in agreement with previous studies suggesting that NLS1 galaxies have small black hole masses that are accreting very close to the Eddington rate. We have found 16 new radio-loud NLS1 galaxies, which increases the number of known radio-loud NLS1 galaxies by a factor of {approx} 5.},
doi = {10.1086/500825},
journal = {The Astronomical Journal , vol. 131, no. 4, April 1, 2006, pp. 1948-1960},
number = ,
volume = ,
place = {United States},
year = {Thu Jan 05 00:00:00 EST 2006},
month = {Thu Jan 05 00:00:00 EST 2006}
}
  • The observed spectral energy distributions of five GeV-selected narrow-line Seyfert 1 (NLS1) galaxies are fitted with a model including the radiation ingredients from the relativistic jet, the accretion disk, and the corona. We compare the properties of these GeV NLS1 galaxies with flat spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs), and radio-quiet (RQ) Seyfert galaxies, and explore possible hints for jet-disk/corona connection. Our results show that the radiation physics and the jet properties of the GeV NLS1 galaxies resemble that of FSRQs. The luminosity variations of PMN J0948+0022 and 1H 0323+342 at the GeV band is tightly correlatedmore » with the beaming factor (δ), similar to that observed in FSRQ 3C 279. The accretion disk luminosities and the jet powers of the GeV NLS1 galaxies cover both the ranges of FSRQs and BL Lacs. With the detection of bright corona emission in 1H 0323+342, we show that the ratio of the corona luminosity (L {sub corona}) to the accretion disk luminosity (L {sub d}) is marginally within the high end of this ratio distribution for an RQ Seyfert galaxy sample, and the variation of jet luminosity may connect with L {sub corona}. However, it is still unclear whether a system with a high L {sub corona}/L {sub d} ratio prefers to power a jet.« less
  • We present the detection of the compact radio structures of 14 radio-loud narrow-line Seyfert 1 (NLS1) galaxies from Very Long Baseline Array (VLBA) observations at 5 GHz performed in 2013. While 50% of the sources of our sample show a compact core only, the remaining 50% exhibit a core-jet structure. The measured brightness temperatures of the cores range from 10{sup 8.4} to 10{sup 11.4} K with a median value of 10{sup 10.1} K, indicating that the radio emission is from non-thermal jets, and that, likely, most sources are not strongly beamed, thus implying a low jet speed in these radio-loudmore » NLS1 galaxies. In combination with archival data taken at multiple frequencies, we find that seven sources show flat or even inverted radio spectra, while steep spectra are revealed in the remaining seven objects. Although all of these sources are very radio-loud with R > 100, their jet properties are diverse in terms of their milliarcsecond (mas) scale (parsec scale) morphology and their overall radio spectral shape. The evidence for slow jet speeds (i.e., less relativistic jets), in combination with the low kinetic/radio power, may offer an explanation for the compact VLBA radio structure in most sources. The mildly relativistic jets in these high accretion rate systems are consistent with a scenario where jets are accelerated from the hot corona above the disk by the magnetic field and the radiation force of the accretion disk. Alternatively, a low jet bulk velocity can be explained by low spin in the Blandford–Znajek mechanism.« less
  • We present the compact radio structure of three radio-loud narrow line Seyfert 1 galaxies from the Very Long Baseline Array archive data at 2.3, 5, and 8.4 GHz. In RXS J16290+4007, the radio structure is mostly unresolved. The combination of compact radio structure, high brightness temperature, and inverted spectrum between simultaneous 2.3 and 8.4 GHz strongly favors jet relativistic beaming. Combined with the very long baseline interferometry data at 1.6 and 8.4 GHz from the literature, we argue that RXS J16333+4718 also may harbor a relativistic jet, with resolved core-jet structure in 5 GHz. B3 1702+457 is clearly resolved withmore » a well-defined jet component. The overall radio steep spectrum indicates that B3 1702+457 is likely a source optically defined as NLS1 with radio definition of compact steep spectrum sources. From these three sources, we found that radio loud NLS1s can be either intrinsically radio loud (e.g., B3 1702+457) or apparently radio loud due to jet beaming effects (e.g., RXS J16290+4007 and RXS J16333+4718).« less
  • We conducted Very Long Baseline Array (VLBA) observations of seven nearby narrow-line Seyfert 1 (NLS1) galaxies at 1.7 GHz ({lambda}18 cm) with milliarcsecond resolution. This is the first systematic very long baseline interferometry study focusing on the central parsec-scale regions of radio-quiet NLS1s. Five of the seven were detected at a brightness temperature of {approx}> 5 Multiplication-Sign 10{sup 6} K and contain radio cores with high brightness temperatures of >6 Multiplication-Sign 10{sup 7} K, indicating a nonthermal process driven by jet-producing central engines as in radio-loud NLS1s and other active galactic nucleus classes. VLBA images of MRK 1239, MRK 705,more » and MRK 766 exhibit parsec-scale jets with clear linear structures. A large portion of the radio power comes from diffuse emission components that are distributed within the nuclear regions ({approx}< 300 pc), which is a common characteristic throughout the observed NLS1s. Jet kinetic powers limited by the Eddington limit may be insufficient to allow the jets to escape to kiloparsec scales for these radio-quiet NLS1s with low-mass black holes of {approx}< 10{sup 7} M {sub Sun }.« less
  • We studied the optical variability (OV) of a large sample of narrow-line Seyfert 1 (NLSy1) and broad-line Seyfert 1 (BLSy1) galaxies with z < 0.8 to investigate any differences in their OV properties. Using archival optical V -band light curves from the Catalina Real Time Transient Survey that span 5–9 years and modeling them using damped random walk, we estimated the amplitude of variability. We found that NLSy1 galaxies as a class show lower amplitude of variability than their broad-line counterparts. In the sample of both NLSy1 and BLSy1 galaxies, radio-loud sources are found to have higher variability amplitude thanmore » radio-quiet sources. Considering only sources that are detected in the X-ray band, NLSy1 galaxies are less optically variable than BLSy1 galaxies. The amplitude of variability in the sample of both NLSy1 and BLSy1 galaxies is found to be anti-correlated with Fe ii strength but correlated with the width of the H β line. The well-known anti-correlation of variability–luminosity and the variability–Eddington ratio is present in our data. Among the radio-loud sample, variability amplitude is found to be correlated with radio-loudness and radio-power, suggesting that jets also play an important role in the OV in radio-loud objects, in addition to the Eddington ratio, which is the main driving factor of OV in radio-quiet sources.« less